Novel feature-based method for multi-modal biomedical image registration compared to intensity-based technique
Abstract Multimodal image registration plays a crucial role in biomedical research, enabling the integration of complementary information from different imaging techniques. We present a novel feature-based approach for multimodal image registration, alongside traditional intensity-based methods. Our...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | Scientific Reports |
| Online Access: | https://doi.org/10.1038/s41598-025-12862-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Multimodal image registration plays a crucial role in biomedical research, enabling the integration of complementary information from different imaging techniques. We present a novel feature-based approach for multimodal image registration, alongside traditional intensity-based methods. Our method, inspired by SPP-net architecture, employs multi-level feature extraction for robust image alignment. Additionally, we perform t-SNE dimensionality reduction on the MALDI-MSI dataset to enhance feature discrimination and visualization. We evaluated both approaches using datasets from the ANHIR Grand Challenge and mass spectrometry imaging modalities (LA-ICP-MS and MALDI-MSI). The proposed feature-based method achieved comparable accuracy to optimized intensity-based approaches, with Dice Coefficients of 0.95 for ANHIR samples (e.g., COAD_05) and 0.97 for mass spectrometry data, while requiring approximately 50% less computational time. Quantitative evaluation through Mutual Information metrics and Hausdorff Distance demonstrated high registration accuracy across different tissue types and imaging modalities. These results establish our feature-based approach as an efficient alternative to traditional intensity-based methods for multimodal image registration in biomedical applications. |
|---|---|
| ISSN: | 2045-2322 |