Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions

Let L denote the operator generated in L2(R+) by Sturm-Liouville equation −y′′+q(x)y=λ2y, x∈R+=[0,∞), y′(0)/y(0)=α0+α1λ+α2λ2, where q is a complex-valued function and αi∈ℂ, i=0,1,2 with α2≠0. In this article, we investigate the eigenvalues and the spectral singularities of L and obtain analogs of Na...

Full description

Saved in:
Bibliographic Details
Main Authors: Elgiz Bairamov, Nihal Yokus
Format: Article
Language:English
Published: Wiley 2009-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2009/289596
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850157902450393088
author Elgiz Bairamov
Nihal Yokus
author_facet Elgiz Bairamov
Nihal Yokus
author_sort Elgiz Bairamov
collection DOAJ
description Let L denote the operator generated in L2(R+) by Sturm-Liouville equation −y′′+q(x)y=λ2y, x∈R+=[0,∞), y′(0)/y(0)=α0+α1λ+α2λ2, where q is a complex-valued function and αi∈ℂ, i=0,1,2 with α2≠0. In this article, we investigate the eigenvalues and the spectral singularities of L and obtain analogs of Naimark and Pavlov conditions for L.
format Article
id doaj-art-67d31dc216f841f9bbeb4add346efb7f
institution OA Journals
issn 1085-3375
1687-0409
language English
publishDate 2009-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-67d31dc216f841f9bbeb4add346efb7f2025-08-20T02:24:03ZengWileyAbstract and Applied Analysis1085-33751687-04092009-01-01200910.1155/2009/289596289596Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary ConditionsElgiz Bairamov0Nihal Yokus1Department of Mathematics, Ankara University, 06100 Tandogan, Ankara, TurkeyDepartment of Mathematics, Ankara University, 06100 Tandogan, Ankara, TurkeyLet L denote the operator generated in L2(R+) by Sturm-Liouville equation −y′′+q(x)y=λ2y, x∈R+=[0,∞), y′(0)/y(0)=α0+α1λ+α2λ2, where q is a complex-valued function and αi∈ℂ, i=0,1,2 with α2≠0. In this article, we investigate the eigenvalues and the spectral singularities of L and obtain analogs of Naimark and Pavlov conditions for L.http://dx.doi.org/10.1155/2009/289596
spellingShingle Elgiz Bairamov
Nihal Yokus
Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions
Abstract and Applied Analysis
title Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions
title_full Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions
title_fullStr Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions
title_full_unstemmed Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions
title_short Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions
title_sort spectral singularities of sturm liouville problems with eigenvalue dependent boundary conditions
url http://dx.doi.org/10.1155/2009/289596
work_keys_str_mv AT elgizbairamov spectralsingularitiesofsturmliouvilleproblemswitheigenvaluedependentboundaryconditions
AT nihalyokus spectralsingularitiesofsturmliouvilleproblemswitheigenvaluedependentboundaryconditions