On separable abelian extensions of rings

Let R be a ring with 1, G(=〈ρ1〉×…×〈ρm〉) a finite abelian automorphism group of R of order n where 〈ρi〉 is cyclic of order ni. for some integers n, ni, and m, and C the center of R whose automorphism group induced by G is isomorphic with G. Then an abelian extension R[x1,…,xm] is defined as a general...

Full description

Saved in:
Bibliographic Details
Main Author: George Szeto
Format: Article
Language:English
Published: Wiley 1982-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171282000714
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849413715083919360
author George Szeto
author_facet George Szeto
author_sort George Szeto
collection DOAJ
description Let R be a ring with 1, G(=〈ρ1〉×…×〈ρm〉) a finite abelian automorphism group of R of order n where 〈ρi〉 is cyclic of order ni. for some integers n, ni, and m, and C the center of R whose automorphism group induced by G is isomorphic with G. Then an abelian extension R[x1,…,xm] is defined as a generalization of cyclic extensions of rings, and R[x1,…,xm] is an Azumaya algebra over K(=CG={c   in   C/(c)ρi=c   for each   ρi   in   G}) such that R[x1,…,xm]≅RG⊗KC[x1,…,xm] if and only if C is Galois over K with Galois group G (the Kanzaki hypothesis).
format Article
id doaj-art-67d0d901ed724f7583ff860dce5fdfb0
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1982-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-67d0d901ed724f7583ff860dce5fdfb02025-08-20T03:34:02ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251982-01-015477978410.1155/S0161171282000714On separable abelian extensions of ringsGeorge Szeto0Mathematics Department, Bradley University, Peoria 61625, Illinois, USALet R be a ring with 1, G(=〈ρ1〉×…×〈ρm〉) a finite abelian automorphism group of R of order n where 〈ρi〉 is cyclic of order ni. for some integers n, ni, and m, and C the center of R whose automorphism group induced by G is isomorphic with G. Then an abelian extension R[x1,…,xm] is defined as a generalization of cyclic extensions of rings, and R[x1,…,xm] is an Azumaya algebra over K(=CG={c   in   C/(c)ρi=c   for each   ρi   in   G}) such that R[x1,…,xm]≅RG⊗KC[x1,…,xm] if and only if C is Galois over K with Galois group G (the Kanzaki hypothesis).http://dx.doi.org/10.1155/S0161171282000714Abelian ring extensionsseparable algebrasAzumaya algebrasGalois extensions.
spellingShingle George Szeto
On separable abelian extensions of rings
International Journal of Mathematics and Mathematical Sciences
Abelian ring extensions
separable algebras
Azumaya algebras
Galois extensions.
title On separable abelian extensions of rings
title_full On separable abelian extensions of rings
title_fullStr On separable abelian extensions of rings
title_full_unstemmed On separable abelian extensions of rings
title_short On separable abelian extensions of rings
title_sort on separable abelian extensions of rings
topic Abelian ring extensions
separable algebras
Azumaya algebras
Galois extensions.
url http://dx.doi.org/10.1155/S0161171282000714
work_keys_str_mv AT georgeszeto onseparableabelianextensionsofrings