Improving Ultrasonic Power Transfer in Air Through Hybrid S-Parameter Modeling and High-Efficiency Compensation

Ultrasonic Power Transfer (UPT) offers several advantages over electromagnetic-based wireless power transfer (WPT), but its implementation in the air still faces significant challenges. The low transmission efficiency caused by substantial acoustic energy scattering and absorption and limited output...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu Liu, Waleed H. Abdulla
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/11/3340
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrasonic Power Transfer (UPT) offers several advantages over electromagnetic-based wireless power transfer (WPT), but its implementation in the air still faces significant challenges. The low transmission efficiency caused by substantial acoustic energy scattering and absorption and limited output power restricts its use in high-power scenarios. Electrical compensation has proven effective in improving circuit-level performance among various optimization methods, yet its application in air UPT remains underexplored due to the lack of an accurate mathematical model. Traditional modeling approaches, such as the Butterworth–Van Dyke (BVD) model, are unsuitable for air-based UPT systems due to weak coupling and high energy loss. To address these limitations, this paper presents a novel hybrid S-parameter model approach by integrating S-parameter theory with two-port network analysis to improve accuracy and reduce complexity. Based on this model, a novel double-side CL compensation scheme was designed, significantly enhancing the UPT system’s performance while simplifying the compensation circuit design using the Smith chart. Experimental results demonstrate that the proposed scheme enhances efficiency to 2.14% and increases output power to 13.5 mW, significantly improving the transmission performance of the UPT system in the air and offering an effective and practical solution.
ISSN:1424-8220