Automated Semantic Segmentation of Arctic Surface Water Features with Very-High Resolution Satellite X-Band Radar Imagery and U-Net Deep Learning: Segmentation sémantique automatisée des caractéristiques des eaux de surface de l’Arctique à partir d’images radar satellite en bande X à très haute résolution et à l’aide de l’apprentissage profond U-Net
Repeatable methods capable of quantifying Arctic surface water extent at high resolutions are important, but still require development. Here, we present a study using very-high resolution (VHR) X-band Synthetic Aperture Radar (SAR) imagery from Capella Space for fine-scale semantic segmentation of A...
Saved in:
| Main Authors: | Michael Allan Merchant, Masoud Mahdianpari, Laura Bourgeau-Chavez, Ben DeVries, Aaron Berg |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2025-12-01
|
| Series: | Canadian Journal of Remote Sensing |
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1080/07038992.2025.2533460 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
MSP U-Net: Crack Segmentation for Low-Resolution Images Based on Multi-Scale Parallel Attention U-Net
by: Joon-Hyeok Kim, et al.
Published: (2024-12-01) -
U-net with ResNet-34 backbone for dual-polarized C-band baltic sea-ice SAR segmentation
by: Juha Karvonen
Published: (2024-01-01) -
Preliminary Design of Satellite Systems through the Integration of Model-Based System Engineering and Agile Methodologies: Application to the <sup>3</sup>ColStar Mission
by: Jeimmy Nataly Buitrago-Leiva, et al.
Published: (2024-09-01) -
Lightweight U-Net for Blood Vessels Segmentation in X-Ray Coronary Angiography
by: Jesus Salvador Ramos-Cortez, et al.
Published: (2025-03-01) -
A comparative study on quantitative precipitation estimation based on GPM satellite and X-band phased-array weather radar
by: Yongyan Su, et al.
Published: (2025-03-01)