Classical eikonal from Magnus expansion

Abstract In a classical scattering problem, the classical eikonal is defined as the generator of the canonical transformation that maps in-states to out-states. It can be regarded as the classical limit of the log of the quantum S-matrix. In a classical analog of the Born approximation in quantum me...

Full description

Saved in:
Bibliographic Details
Main Authors: Joon-Hwi Kim, Jung-Wook Kim, Sungsoo Kim, Sangmin Lee
Format: Article
Language:English
Published: SpringerOpen 2025-01-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP01(2025)111
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In a classical scattering problem, the classical eikonal is defined as the generator of the canonical transformation that maps in-states to out-states. It can be regarded as the classical limit of the log of the quantum S-matrix. In a classical analog of the Born approximation in quantum mechanics, the classical eikonal admits an expansion in oriented tree graphs, where oriented edges denote retarded/advanced worldline propagators. The Magnus expansion, which takes the log of a time-ordered exponential integral, offers an efficient method to compute the coefficients of the tree graphs to all orders. We exploit a Hopf algebra structure behind the Magnus expansion to develop a fast algorithm which can compute the tree coefficients up to the 12th order (over half a million trees) in less than an hour. In a relativistic setting, our methods can be applied to the post-Minkowskian (PM) expansion for gravitational binaries in the worldline formalism. We demonstrate the methods by computing the 3PM eikonal and find agreement with previous results based on amplitude methods. Importantly, the Magnus expansion yields a finite eikonal, while the naïve eikonal based on the time-symmetric propagator is infrared-divergent from 3PM on.
ISSN:1029-8479