Preferable single-atom catalysts enabled by natural language processing for high energy density Na-S batteries
Abstract Employing appropriate single-atom (SA) catalysts in room-temperature sodium-sulfur (Na-S) batteries is propitious to promote the performance, whereas a universal designing strategy for the highly-efficient single-atom catalysts is absent. In this work, we adopt natural language processing t...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-60931-x |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Employing appropriate single-atom (SA) catalysts in room-temperature sodium-sulfur (Na-S) batteries is propitious to promote the performance, whereas a universal designing strategy for the highly-efficient single-atom catalysts is absent. In this work, we adopt natural language processing techniques to screen the potential single-atom catalysts, then a binary descriptor is constructed to optimize the catalyst candidates. Atomically dispersed cobalt anchored to both nitrogen and sulfur atoms (SA Co-N/S) is selected as an ideal catalyst to significantly facilitate sulfur reduction reaction. The sulfur cathode catalyzed with SA Co-N/S almost realizes complete transformation, and the corresponding pouch cell exhibits satisfactory performance with high mass loading. In-situ X-ray absorption spectroscopy reveals the dynamical interactions between SA Co-N/S and sulfur species in the sulfur reduction reaction. Our work provides a method to select the preferable SA catalyst and to understand the interfacial catalysis dynamics in the sustainable Na-S systems. |
|---|---|
| ISSN: | 2041-1723 |