Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.

Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not...

Full description

Saved in:
Bibliographic Details
Main Authors: Lin Lin, Elena Dacal, Nuria Díez, Claudia Carmona, Alexandra Martin Ramirez, Lourdes Barón Argos, David Bermejo-Peláez, Carla Caballero, Daniel Cuadrado, Oscar Darias-Plasencia, Jaime García-Villena, Alexander Bakardjiev, Maria Postigo, Ethan Recalde-Jaramillo, Maria Flores-Chavez, Andrés Santos, María Jesús Ledesma-Carbayo, José M Rubio, Miguel Luengo-Oroz
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-04-01
Series:PLoS Neglected Tropical Diseases
Online Access:https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0012117&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850247594014408704
author Lin Lin
Elena Dacal
Nuria Díez
Claudia Carmona
Alexandra Martin Ramirez
Lourdes Barón Argos
David Bermejo-Peláez
Carla Caballero
Daniel Cuadrado
Oscar Darias-Plasencia
Jaime García-Villena
Alexander Bakardjiev
Maria Postigo
Ethan Recalde-Jaramillo
Maria Flores-Chavez
Andrés Santos
María Jesús Ledesma-Carbayo
José M Rubio
Miguel Luengo-Oroz
author_facet Lin Lin
Elena Dacal
Nuria Díez
Claudia Carmona
Alexandra Martin Ramirez
Lourdes Barón Argos
David Bermejo-Peláez
Carla Caballero
Daniel Cuadrado
Oscar Darias-Plasencia
Jaime García-Villena
Alexander Bakardjiev
Maria Postigo
Ethan Recalde-Jaramillo
Maria Flores-Chavez
Andrés Santos
María Jesús Ledesma-Carbayo
José M Rubio
Miguel Luengo-Oroz
author_sort Lin Lin
collection DOAJ
description Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.
format Article
id doaj-art-66c8dd11d42e4239b025ceb7d44c2ea1
institution OA Journals
issn 1935-2727
1935-2735
language English
publishDate 2024-04-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Neglected Tropical Diseases
spelling doaj-art-66c8dd11d42e4239b025ceb7d44c2ea12025-08-20T01:58:54ZengPublic Library of Science (PLoS)PLoS Neglected Tropical Diseases1935-27271935-27352024-04-01184e001211710.1371/journal.pntd.0012117Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.Lin LinElena DacalNuria DíezClaudia CarmonaAlexandra Martin RamirezLourdes Barón ArgosDavid Bermejo-PeláezCarla CaballeroDaniel CuadradoOscar Darias-PlasenciaJaime García-VillenaAlexander BakardjievMaria PostigoEthan Recalde-JaramilloMaria Flores-ChavezAndrés SantosMaría Jesús Ledesma-CarbayoJosé M RubioMiguel Luengo-OrozFilariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0012117&type=printable
spellingShingle Lin Lin
Elena Dacal
Nuria Díez
Claudia Carmona
Alexandra Martin Ramirez
Lourdes Barón Argos
David Bermejo-Peláez
Carla Caballero
Daniel Cuadrado
Oscar Darias-Plasencia
Jaime García-Villena
Alexander Bakardjiev
Maria Postigo
Ethan Recalde-Jaramillo
Maria Flores-Chavez
Andrés Santos
María Jesús Ledesma-Carbayo
José M Rubio
Miguel Luengo-Oroz
Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.
PLoS Neglected Tropical Diseases
title Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.
title_full Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.
title_fullStr Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.
title_full_unstemmed Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.
title_short Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.
title_sort edge artificial intelligence ai for real time automatic quantification of filariasis in mobile microscopy
url https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0012117&type=printable
work_keys_str_mv AT linlin edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT elenadacal edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT nuriadiez edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT claudiacarmona edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT alexandramartinramirez edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT lourdesbaronargos edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT davidbermejopelaez edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT carlacaballero edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT danielcuadrado edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT oscardariasplasencia edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT jaimegarciavillena edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT alexanderbakardjiev edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT mariapostigo edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT ethanrecaldejaramillo edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT mariafloreschavez edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT andressantos edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT mariajesusledesmacarbayo edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT josemrubio edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy
AT miguelluengooroz edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy