Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.
Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2024-04-01
|
| Series: | PLoS Neglected Tropical Diseases |
| Online Access: | https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0012117&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850247594014408704 |
|---|---|
| author | Lin Lin Elena Dacal Nuria Díez Claudia Carmona Alexandra Martin Ramirez Lourdes Barón Argos David Bermejo-Peláez Carla Caballero Daniel Cuadrado Oscar Darias-Plasencia Jaime García-Villena Alexander Bakardjiev Maria Postigo Ethan Recalde-Jaramillo Maria Flores-Chavez Andrés Santos María Jesús Ledesma-Carbayo José M Rubio Miguel Luengo-Oroz |
| author_facet | Lin Lin Elena Dacal Nuria Díez Claudia Carmona Alexandra Martin Ramirez Lourdes Barón Argos David Bermejo-Peláez Carla Caballero Daniel Cuadrado Oscar Darias-Plasencia Jaime García-Villena Alexander Bakardjiev Maria Postigo Ethan Recalde-Jaramillo Maria Flores-Chavez Andrés Santos María Jesús Ledesma-Carbayo José M Rubio Miguel Luengo-Oroz |
| author_sort | Lin Lin |
| collection | DOAJ |
| description | Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce. |
| format | Article |
| id | doaj-art-66c8dd11d42e4239b025ceb7d44c2ea1 |
| institution | OA Journals |
| issn | 1935-2727 1935-2735 |
| language | English |
| publishDate | 2024-04-01 |
| publisher | Public Library of Science (PLoS) |
| record_format | Article |
| series | PLoS Neglected Tropical Diseases |
| spelling | doaj-art-66c8dd11d42e4239b025ceb7d44c2ea12025-08-20T01:58:54ZengPublic Library of Science (PLoS)PLoS Neglected Tropical Diseases1935-27271935-27352024-04-01184e001211710.1371/journal.pntd.0012117Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.Lin LinElena DacalNuria DíezClaudia CarmonaAlexandra Martin RamirezLourdes Barón ArgosDavid Bermejo-PeláezCarla CaballeroDaniel CuadradoOscar Darias-PlasenciaJaime García-VillenaAlexander BakardjievMaria PostigoEthan Recalde-JaramilloMaria Flores-ChavezAndrés SantosMaría Jesús Ledesma-CarbayoJosé M RubioMiguel Luengo-OrozFilariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0012117&type=printable |
| spellingShingle | Lin Lin Elena Dacal Nuria Díez Claudia Carmona Alexandra Martin Ramirez Lourdes Barón Argos David Bermejo-Peláez Carla Caballero Daniel Cuadrado Oscar Darias-Plasencia Jaime García-Villena Alexander Bakardjiev Maria Postigo Ethan Recalde-Jaramillo Maria Flores-Chavez Andrés Santos María Jesús Ledesma-Carbayo José M Rubio Miguel Luengo-Oroz Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy. PLoS Neglected Tropical Diseases |
| title | Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy. |
| title_full | Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy. |
| title_fullStr | Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy. |
| title_full_unstemmed | Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy. |
| title_short | Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy. |
| title_sort | edge artificial intelligence ai for real time automatic quantification of filariasis in mobile microscopy |
| url | https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0012117&type=printable |
| work_keys_str_mv | AT linlin edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT elenadacal edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT nuriadiez edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT claudiacarmona edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT alexandramartinramirez edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT lourdesbaronargos edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT davidbermejopelaez edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT carlacaballero edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT danielcuadrado edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT oscardariasplasencia edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT jaimegarciavillena edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT alexanderbakardjiev edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT mariapostigo edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT ethanrecaldejaramillo edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT mariafloreschavez edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT andressantos edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT mariajesusledesmacarbayo edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT josemrubio edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy AT miguelluengooroz edgeartificialintelligenceaiforrealtimeautomaticquantificationoffilariasisinmobilemicroscopy |