New 1,3,4-Oxadiazole Based Photosensitizers for Dye Sensitized Solar Cells (DSSCs)
1,3,4-Oxadiazole based photosensitizers with biphenyl, naphthalene, anthracene, and triphenylamine as the electron-donating moiety were synthesized for solar cell applications. In these photosensitizers, cyano groups were introduced as the electron acceptor and the anchor group because of their high...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2015-01-01
|
| Series: | International Journal of Photoenergy |
| Online Access: | http://dx.doi.org/10.1155/2015/637652 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | 1,3,4-Oxadiazole based photosensitizers with biphenyl, naphthalene, anthracene, and triphenylamine as the electron-donating moiety were synthesized for solar cell applications. In these photosensitizers, cyano groups were introduced as the electron acceptor and the anchor group because of their high electron-withdrawing ability and strong bonding to the semiconductor. Oxadiazole isomers were used as the π-conjugation system, which bridges the donor-acceptor systems. The electrochemical and optical properties of the sensitizers were investigated both in their native form and upon incorporation into dye sensitized solar cells. The results of UV-visible absorption spectroscopy, electrochemical impedance spectroscopic measurements, and photocurrent voltage characteristics indicate that 1,3,4-oxadiazole pi-spacer with the anthracene moiety has the highest efficiency of 2.58%. Density functional theory was employed to optimize the structures of the sensitizers and the TiO2 cluster. |
|---|---|
| ISSN: | 1110-662X 1687-529X |