Acoustic Emission Monitoring and Failure Precursors of Sandstone Samples under Various Loading and Unloading Paths

To explore the failure precursors of hard rock, a series of triaxial loading and unloading experiments were carried out on sandstone sample using the acoustic emission systems. The extreme-point symmetric mode decomposition method (ESMD method) was used to denoise and reconstruct the AE data. The AE...

Full description

Saved in:
Bibliographic Details
Main Authors: Jie Xu, Jingdong Jiang, Lingling Zuo, Yufeng Gao
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2017/9760940
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To explore the failure precursors of hard rock, a series of triaxial loading and unloading experiments were carried out on sandstone sample using the acoustic emission systems. The extreme-point symmetric mode decomposition method (ESMD method) was used to denoise and reconstruct the AE data. The AE quiet period in Scheme I becomes much more obvious with the confining pressure increasing, which can be regarded as the precursor information of the sample failure under conventional triaxial compression. Unlike Scheme I, there are no obvious precursory characteristics before failure in Schemes II and III, and the count rate reaches the maximum at the peak point. When the stress ratio ranges from 0.8 to 1.0, the fractal values of acoustic emission can be used to investigate the failure precursors of samples at a lower confining pressure. When the time ratio is greater than 0.8 under higher confining pressures, the fractal values of sandstone samples under unloading paths are rapidly reduced, which can be used to predict rock failure at higher confining pressures.
ISSN:1070-9622
1875-9203