Ultimate Bound of a 3D Chaotic System and Its Application in Chaos Synchronization
Two ellipsoidal ultimate boundary regions of a special three-dimensional (3D) chaotic system are proposed. To this chaotic system, the linear coefficient of the ith state variable in the ith state equation has the same sign; it also has two one-order terms and one quadratic cross-product term in eac...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/781594 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two ellipsoidal ultimate boundary regions of a special three-dimensional (3D) chaotic system are proposed. To this chaotic system, the linear coefficient of the ith state variable in the ith state equation has the same sign; it also has two one-order terms and one quadratic cross-product term in each equation. A numerical solution and an analytical expression of the ultimate bounds are received. To get the analytical expression of the ultimate boundary region, a new result of one maximum optimization question is proved. The corresponding ultimate boundary regions are demonstrated through numerical simulations. Utilizing the bounds obtained, a linear controller is proposed to achieve the complete chaos synchronization. Numerical simulation exhibits the feasibility of the designed scheme. |
---|---|
ISSN: | 1085-3375 1687-0409 |