Properties of Fuzzy Compact Linear Operators on Fuzzy Normed Spaces

In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy boun...

Full description

Saved in:
Bibliographic Details
Main Author: Kider et al.
Format: Article
Language:English
Published: University of Baghdad, College of Science for Women 2019-03-01
Series:مجلة بغداد للعلوم
Subjects:
Online Access:http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3188
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact operators. Finally, if T belongs to FC(V,U) and dimension of V is finite then T is fuzzy compact is proved.
ISSN:2078-8665
2411-7986