β-Cyclodextrin-Modified Laser-Induced Graphene Electrode for Detection of <i>N</i>6-Methyladenosine in RNA

Laser-induced graphene (LIG) possesses characteristics of easy handling, miniaturization, and unique electrical properties. We modified the surface of LIG by electropolymerizing β-cyclodextrin (β-CD), which was used to immobilize antibodies on the electrode surface for highly sensitive detection of...

Full description

Saved in:
Bibliographic Details
Main Authors: Jingyi Guo, Mei Zhao, Xia Kuang, Zilin Chen, Fang Wang
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/29/19/4718
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Laser-induced graphene (LIG) possesses characteristics of easy handling, miniaturization, and unique electrical properties. We modified the surface of LIG by electropolymerizing β-cyclodextrin (β-CD), which was used to immobilize antibodies on the electrode surface for highly sensitive detection of targets. <i>N</i>6-methyladenosine (m6A) is the most prevalent reversible modification in mammalian messenger RNA and noncoding RNA, influencing the development of various cancers. Here, β-CD was electropolymerized to immobilize the anti-m6A antibody, which subsequently recognized the target m6A. This was integrated into the catalytic hydrogen peroxide–hydroquinone (H<sub>2</sub>O<sub>2</sub>-HQ) redox system using phos-tag-biotin to generate electrochemical signals from streptavidin-modified horseradish peroxidase (SA-HRP). Under optimal conditions, the biosensor exhibited a linear range from 0.1 to 100 nM with a minimum detection limit of 96 pM. The method was successfully applied to the recovery analysis of m6A from HeLa cells through spiking experiments and aims to inspire strategies for point-of-care testing (POCT).
ISSN:1420-3049