An Evolutionary Learning Whale Optimization Algorithm for Disassembly and Assembly Hybrid Line Balancing Problems
In order to protect the environment, an increasing number of people are paying attention to the recycling and remanufacturing of EOL (End-of-Life) products. Furthermore, many companies aim to establish their own closed-loop supply chains, encouraging the integration of disassembly and assembly lines...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/13/2/256 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to protect the environment, an increasing number of people are paying attention to the recycling and remanufacturing of EOL (End-of-Life) products. Furthermore, many companies aim to establish their own closed-loop supply chains, encouraging the integration of disassembly and assembly lines into a unified closed-loop production system. In this work, a hybrid production line that combines disassembly and assembly processes, incorporating human–machine collaboration, is designed based on the traditional disassembly line. A mathematical model is proposed to address the human–machine collaboration disassembly and assembly hybrid line balancing problem in this layout. To solve the model, an evolutionary learning-based whale optimization algorithm is developed. The experimental results show that the proposed algorithm is significantly faster than CPLEX, particularly for large-scale disassembly instances. Moreover, it outperforms CPLEX and other swarm intelligence algorithms in solving large-scale optimization problems while maintaining high solution quality. |
---|---|
ISSN: | 2227-7390 |