Genetically encoded biosensors for the circular plastics bioeconomy

Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of...

Full description

Saved in:
Bibliographic Details
Main Authors: Micaela Chacón, Neil Dixon
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Metabolic Engineering Communications
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214030124000245
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of plastics. Biology sequence/design space is complex requiring high-throughput analytical methods to facilitate the iterative optimisation, design-build, test-learn (DBTL), cycle of Synthetic Biology. Furthermore, genetic regulatory tools can enable harmonisation between biotechnological demands and the physiological constraints of the selected production host. Genetically encoded biosensors offer a solution for both requirements to facilitate the circular plastic bioeconomy. In this review we present a summary of biosensors developed to date reported to be responsive to plastic precursors/monomers. In addition, we provide a summary of the demonstrated and prospective applications of these biosensors for the construction and deconstruction of plastics. Collectively, this review provides a valuable resource of biosensor tools and enabled applications to support the development of the circular plastics bioeconomy.
ISSN:2214-0301