Continuité des racines d’après Rabinoff

The content of this paper is a generalization of a theorem by Joseph Rabinoff: if $\mathscr{P}$ is a finite family of pointed and rational polyhedra in $N_\mathbb{R}$ such that there exists a fan in $N_\mathbb{R}$ that contains all the recession cones of the polyhedra of $\mathscr{P}$, if $k$ is a c...

Full description

Saved in:
Bibliographic Details
Main Author: Marie, Emeryck
Format: Article
Language:English
Published: Académie des sciences 2023-03-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.439/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206234766114816
author Marie, Emeryck
author_facet Marie, Emeryck
author_sort Marie, Emeryck
collection DOAJ
description The content of this paper is a generalization of a theorem by Joseph Rabinoff: if $\mathscr{P}$ is a finite family of pointed and rational polyhedra in $N_\mathbb{R}$ such that there exists a fan in $N_\mathbb{R}$ that contains all the recession cones of the polyhedra of $\mathscr{P}$, if $k$ is a complete non-archimedean field, if $S$ is a connected and regular $k$-analytic space (in the sense of Berkovich) and $Y$ is a closed $k$-analytic subset of $U_{\mathscr{P}} \times _k S$ which is relative complete intersection and contained in the relative interior of $U_{\mathscr{P}} \times _k S$ over $S$, then the quasifiniteness of $\pi : Y \rightarrow S$ implies its flatness and finiteness; moreover, all the finite fibers of $\pi $ have the same length. This namely gives a analytic justification to the concept of stable intersection used in the theory of tropical intersection.
format Article
id doaj-art-65743d236d984662b726e552aebd8635
institution Kabale University
issn 1778-3569
language English
publishDate 2023-03-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-65743d236d984662b726e552aebd86352025-02-07T11:07:00ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-03-01361G368569610.5802/crmath.43910.5802/crmath.439Continuité des racines d’après RabinoffMarie, Emeryck0Technische Universität Chemnitz, Fakultät für Mathematik, Reichenhainer Straße 39, 09126 Chemnitz, GermanyThe content of this paper is a generalization of a theorem by Joseph Rabinoff: if $\mathscr{P}$ is a finite family of pointed and rational polyhedra in $N_\mathbb{R}$ such that there exists a fan in $N_\mathbb{R}$ that contains all the recession cones of the polyhedra of $\mathscr{P}$, if $k$ is a complete non-archimedean field, if $S$ is a connected and regular $k$-analytic space (in the sense of Berkovich) and $Y$ is a closed $k$-analytic subset of $U_{\mathscr{P}} \times _k S$ which is relative complete intersection and contained in the relative interior of $U_{\mathscr{P}} \times _k S$ over $S$, then the quasifiniteness of $\pi : Y \rightarrow S$ implies its flatness and finiteness; moreover, all the finite fibers of $\pi $ have the same length. This namely gives a analytic justification to the concept of stable intersection used in the theory of tropical intersection.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.439/
spellingShingle Marie, Emeryck
Continuité des racines d’après Rabinoff
Comptes Rendus. Mathématique
title Continuité des racines d’après Rabinoff
title_full Continuité des racines d’après Rabinoff
title_fullStr Continuité des racines d’après Rabinoff
title_full_unstemmed Continuité des racines d’après Rabinoff
title_short Continuité des racines d’après Rabinoff
title_sort continuite des racines d apres rabinoff
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.439/
work_keys_str_mv AT marieemeryck continuitedesracinesdapresrabinoff