Continuité des racines d’après Rabinoff
The content of this paper is a generalization of a theorem by Joseph Rabinoff: if $\mathscr{P}$ is a finite family of pointed and rational polyhedra in $N_\mathbb{R}$ such that there exists a fan in $N_\mathbb{R}$ that contains all the recession cones of the polyhedra of $\mathscr{P}$, if $k$ is a c...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-03-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.439/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206234766114816 |
---|---|
author | Marie, Emeryck |
author_facet | Marie, Emeryck |
author_sort | Marie, Emeryck |
collection | DOAJ |
description | The content of this paper is a generalization of a theorem by Joseph Rabinoff: if $\mathscr{P}$ is a finite family of pointed and rational polyhedra in $N_\mathbb{R}$ such that there exists a fan in $N_\mathbb{R}$ that contains all the recession cones of the polyhedra of $\mathscr{P}$, if $k$ is a complete non-archimedean field, if $S$ is a connected and regular $k$-analytic space (in the sense of Berkovich) and $Y$ is a closed $k$-analytic subset of $U_{\mathscr{P}} \times _k S$ which is relative complete intersection and contained in the relative interior of $U_{\mathscr{P}} \times _k S$ over $S$, then the quasifiniteness of $\pi : Y \rightarrow S$ implies its flatness and finiteness; moreover, all the finite fibers of $\pi $ have the same length. This namely gives a analytic justification to the concept of stable intersection used in the theory of tropical intersection. |
format | Article |
id | doaj-art-65743d236d984662b726e552aebd8635 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2023-03-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-65743d236d984662b726e552aebd86352025-02-07T11:07:00ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-03-01361G368569610.5802/crmath.43910.5802/crmath.439Continuité des racines d’après RabinoffMarie, Emeryck0Technische Universität Chemnitz, Fakultät für Mathematik, Reichenhainer Straße 39, 09126 Chemnitz, GermanyThe content of this paper is a generalization of a theorem by Joseph Rabinoff: if $\mathscr{P}$ is a finite family of pointed and rational polyhedra in $N_\mathbb{R}$ such that there exists a fan in $N_\mathbb{R}$ that contains all the recession cones of the polyhedra of $\mathscr{P}$, if $k$ is a complete non-archimedean field, if $S$ is a connected and regular $k$-analytic space (in the sense of Berkovich) and $Y$ is a closed $k$-analytic subset of $U_{\mathscr{P}} \times _k S$ which is relative complete intersection and contained in the relative interior of $U_{\mathscr{P}} \times _k S$ over $S$, then the quasifiniteness of $\pi : Y \rightarrow S$ implies its flatness and finiteness; moreover, all the finite fibers of $\pi $ have the same length. This namely gives a analytic justification to the concept of stable intersection used in the theory of tropical intersection.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.439/ |
spellingShingle | Marie, Emeryck Continuité des racines d’après Rabinoff Comptes Rendus. Mathématique |
title | Continuité des racines d’après Rabinoff |
title_full | Continuité des racines d’après Rabinoff |
title_fullStr | Continuité des racines d’après Rabinoff |
title_full_unstemmed | Continuité des racines d’après Rabinoff |
title_short | Continuité des racines d’après Rabinoff |
title_sort | continuite des racines d apres rabinoff |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.439/ |
work_keys_str_mv | AT marieemeryck continuitedesracinesdapresrabinoff |