Strain-Mode Rockburst Dynamics in Granite: Mechanisms, Evolution Stages, and Acoustic Emission-Based Early Warning Strategies

Granite is widely used in laboratory rockburst simulations due to its exceptional strength, brittleness, and uniform composition. This study employs a true triaxial loading system to replicate asymmetric stress states near free surfaces, allowing precise control of three-dimensional stresses to simu...

Full description

Saved in:
Bibliographic Details
Main Authors: Chuanyu Hu, Zhiheng Mei, Zhenhang Xiao, Fuding Mei
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/9/4884
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Granite is widely used in laboratory rockburst simulations due to its exceptional strength, brittleness, and uniform composition. This study employs a true triaxial loading system to replicate asymmetric stress states near free surfaces, allowing precise control of three-dimensional stresses to simulate strain-mode rockbursts. Advanced monitoring tools, such as acoustic emission (AE) and high-speed imaging, were used to investigate the evolution process, failure mechanisms, and monitoring strategies. The evolution of strain-mode rockbursts is divided into five stages: stress accumulation, crack initiation, critical instability, rockburst occurrence, and residual stress adjustment. Each stage exhibits dynamic responses and progressive energy release. Failure is governed by a tension–shear coexistence mechanism, where vertical splitting and diagonal shear fractures near free surfaces lead to V-shaped craters and violent rock fragment ejection. This reflects the brittle nature of granite under high-stress conditions. The AE monitoring proved highly effective in identifying rockburst precursors, with key indicators including quiet periods of low AE activity and sudden surges in AE counts, coupled with ‘V-shaped’ b-value troughs, offering reliable early warning signals. These findings provide critical insights into strain-mode rockburst dynamics, highlighting the transition from elastic deformation to dynamic failure and the role of energy release mechanisms.
ISSN:2076-3417