<i>Bacillus</i><i> thuringiensis</i> Exopolysaccharide BPS-2 Ameliorates Ulcerative Colitis in a Murine Model Through Modulation of Gut Microbiota and Suppression of the NF-κB Cascade

This study investigated the therapeutic potential of <i>Bacillus thuringiensis</i> extracellular polysaccharide BPS-2 in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) murine models. BPS-2 demonstrated significant efficacy in ameliorating UC-associated pathologies through t...

Full description

Saved in:
Bibliographic Details
Main Authors: Zexin Gao, Huan Li, Jungang Wen, Wenping Ding, Jie Yu, Yue Zhang, Xiaojuan Song, Jianrong Wu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/14/13/2378
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigated the therapeutic potential of <i>Bacillus thuringiensis</i> extracellular polysaccharide BPS-2 in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) murine models. BPS-2 demonstrated significant efficacy in ameliorating UC-associated pathologies through three principal mechanisms: (1) attenuating histopathological damage while preserving colon epithelial integrity, (2) modulating immune marker expression patterns in colon tissues, and (3) restoring gut microbiota homeostasis. BPS-2 exhibited multi-faceted protective effects on the gut by mitigating oxidative stress responses and enhancing short-chain fatty acid biosynthesis, leading to an improved gut microbial community structure. Molecular docking analysis displayed strong binding affinity (ΔG = −7.8 kcal/mol) between the BPS-2U fragment and the Nuclear Factor κB (NF-κB) p50/p65 heterodimer, suggesting the potential disruption of NF-κB signaling pathways. Complementary molecular dynamics simulations revealed exceptional conformational stability in the p65-BPS-2U complex. These findings establish BPS-2 as a natural food additive that modulates the microbiota-barrier–inflammation axis through dietary intervention, offering a novel strategy to alleviate UC.
ISSN:2304-8158