Optimizing Machine Learning-Based Prediction of Terrestrial Dissolved Organic Matter in the Ocean Using Fluorescence and LC-FTMS Data

Saved in:
Bibliographic Details
Main Authors: Marlo Bareth, Boris P Koch, Gabriel Zachmann, Xianyu Kong, Oliver J. Lechtenfeld, Sebastian Maneth
Format: Article
Language:English
Published: American Chemical Society 2025-07-01
Series:ACS Omega
Online Access:https://doi.org/10.1021/acsomega.5c02849
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849469745521229824
author Marlo Bareth
Boris P Koch
Gabriel Zachmann
Xianyu Kong
Oliver J. Lechtenfeld
Sebastian Maneth
author_facet Marlo Bareth
Boris P Koch
Gabriel Zachmann
Xianyu Kong
Oliver J. Lechtenfeld
Sebastian Maneth
author_sort Marlo Bareth
collection DOAJ
format Article
id doaj-art-651f0acd655a42b3918b00c83e10a4e3
institution Kabale University
issn 2470-1343
language English
publishDate 2025-07-01
publisher American Chemical Society
record_format Article
series ACS Omega
spelling doaj-art-651f0acd655a42b3918b00c83e10a4e32025-08-20T03:25:22ZengAmerican Chemical SocietyACS Omega2470-13432025-07-011027294972950910.1021/acsomega.5c02849Optimizing Machine Learning-Based Prediction of Terrestrial Dissolved Organic Matter in the Ocean Using Fluorescence and LC-FTMS DataMarlo Bareth0Boris P Koch1Gabriel Zachmann2Xianyu Kong3Oliver J. Lechtenfeld4Sebastian Maneth5Ecological chemistry department, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, GermanyEcological chemistry department, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, GermanyFaculty 3 - Mathematics and Computer Science, University of Bremen, Bremen, GermanyEcological chemistry department, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, GermanyDepartment Environmental Analytical Chemistry Research group BioGeoOmics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, GermanyFaculty 3 - Mathematics and Computer Science, University of Bremen, Bremen, Germanyhttps://doi.org/10.1021/acsomega.5c02849
spellingShingle Marlo Bareth
Boris P Koch
Gabriel Zachmann
Xianyu Kong
Oliver J. Lechtenfeld
Sebastian Maneth
Optimizing Machine Learning-Based Prediction of Terrestrial Dissolved Organic Matter in the Ocean Using Fluorescence and LC-FTMS Data
ACS Omega
title Optimizing Machine Learning-Based Prediction of Terrestrial Dissolved Organic Matter in the Ocean Using Fluorescence and LC-FTMS Data
title_full Optimizing Machine Learning-Based Prediction of Terrestrial Dissolved Organic Matter in the Ocean Using Fluorescence and LC-FTMS Data
title_fullStr Optimizing Machine Learning-Based Prediction of Terrestrial Dissolved Organic Matter in the Ocean Using Fluorescence and LC-FTMS Data
title_full_unstemmed Optimizing Machine Learning-Based Prediction of Terrestrial Dissolved Organic Matter in the Ocean Using Fluorescence and LC-FTMS Data
title_short Optimizing Machine Learning-Based Prediction of Terrestrial Dissolved Organic Matter in the Ocean Using Fluorescence and LC-FTMS Data
title_sort optimizing machine learning based prediction of terrestrial dissolved organic matter in the ocean using fluorescence and lc ftms data
url https://doi.org/10.1021/acsomega.5c02849
work_keys_str_mv AT marlobareth optimizingmachinelearningbasedpredictionofterrestrialdissolvedorganicmatterintheoceanusingfluorescenceandlcftmsdata
AT borispkoch optimizingmachinelearningbasedpredictionofterrestrialdissolvedorganicmatterintheoceanusingfluorescenceandlcftmsdata
AT gabrielzachmann optimizingmachinelearningbasedpredictionofterrestrialdissolvedorganicmatterintheoceanusingfluorescenceandlcftmsdata
AT xianyukong optimizingmachinelearningbasedpredictionofterrestrialdissolvedorganicmatterintheoceanusingfluorescenceandlcftmsdata
AT oliverjlechtenfeld optimizingmachinelearningbasedpredictionofterrestrialdissolvedorganicmatterintheoceanusingfluorescenceandlcftmsdata
AT sebastianmaneth optimizingmachinelearningbasedpredictionofterrestrialdissolvedorganicmatterintheoceanusingfluorescenceandlcftmsdata