Power Estimation and Energy Efficiency of AI Accelerators on Embedded Systems

The rapid expansion of IoT devices poses new challenges for AI-driven services, particularly in terms of energy consumption. Although cloud-based AI processing has been the dominant approach, its high energy consumption calls for more energy-efficient alternatives. Edge computing offers an approach...

Full description

Saved in:
Bibliographic Details
Main Authors: Minseon Kang, Moonju Park
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/14/3840
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid expansion of IoT devices poses new challenges for AI-driven services, particularly in terms of energy consumption. Although cloud-based AI processing has been the dominant approach, its high energy consumption calls for more energy-efficient alternatives. Edge computing offers an approach for reducing both latency and energy consumption. In this paper, we propose a methodology for estimating the power consumption of AI accelerators on an embedded edge device. Through experimental evaluations involving GPU- and Edge TPU-based platforms, the proposed method demonstrated estimation errors below 8%. The estimation errors were partly due to unaccounted power consumption from main memory and storage access. The proposed approach provides a foundation for more reliable energy management in AI-powered edge computing systems.
ISSN:1996-1073