Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications

The rapid development of microfluidics has driven innovations in material engineering, particularly through its ability to precisely manipulate fluids and cells at microscopic scales. Microfluidic biomaterials, a cutting-edge interdisciplinary field integrating microfluidic technology with biomateri...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiaqi Lin, Lijuan Cui, Xiaokun Shi, Shuping Wu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Journal of Functional Biomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4983/16/5/166
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid development of microfluidics has driven innovations in material engineering, particularly through its ability to precisely manipulate fluids and cells at microscopic scales. Microfluidic biomaterials, a cutting-edge interdisciplinary field integrating microfluidic technology with biomaterials science, are revolutionizing biomedical research. This review focuses on the functional design and fabrication of organ-on-a-chip (OoAC) platforms via 3D bioprinting, explores the applications of biomaterials in drug delivery, cell culture, and tissue engineering, and evaluates the potential of microfluidic systems in advancing personalized healthcare. We systematically analyze the evolution of microfluidic materials—from silicon and glass to polymers and paper—and highlight the advantages of 3D bioprinting over traditional fabrication methods. Currently, despite significant advances in microfluidics in medicine, challenges in scalability, stability, and clinical translation remain. The future of microfluidic biomaterials will depend on combining 3D bioprinting with dynamic functional design, developing hybrid strategies that combine traditional molds with bio-printed structures, and using artificial intelligence to monitor drug delivery or tissue response in real time. We believe that interdisciplinary collaborations between materials science, micromachining, and clinical medicine will accelerate the translation of organ-on-a-chip platforms into personalized therapies and high-throughput drug screening tools.
ISSN:2079-4983