Sea-quark dynamics in decuplet ( $$\frac{3}{2}^+$$ 3 2 + ) $$\rightarrow $$ → octet ( $$\frac{1}{2}^+$$ 1 2 + ) transition quadrupole moment

Abstract We investigated the electromagnetic quadrupole transition of baryon decuplet ( $$J^P= \frac{3}{2}^+$$ J P = 3 2 + ) to octet ( $$J^P= \frac{1}{2}^+$$ J P = 1 2 + ) using the statistical framework together with the principle of detailed balance. The statistical approach assumed the expansion...

Full description

Saved in:
Bibliographic Details
Main Authors: Preeti Bhall, Alka Upadhyay
Format: Article
Language:English
Published: SpringerOpen 2025-03-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-025-13925-4
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849762414984167424
author Preeti Bhall
Alka Upadhyay
author_facet Preeti Bhall
Alka Upadhyay
author_sort Preeti Bhall
collection DOAJ
description Abstract We investigated the electromagnetic quadrupole transition of baryon decuplet ( $$J^P= \frac{3}{2}^+$$ J P = 3 2 + ) to octet ( $$J^P= \frac{1}{2}^+$$ J P = 1 2 + ) using the statistical framework together with the principle of detailed balance. The statistical approach assumed the expansion of hadrons in terms of various quark–gluon Fock states. By specifying the appropriate multiplicity in spin, color and flavor space, the relative probabilities of strange and non-strange quark–gluon Fock state are calculated. These probabilities further accumulated in the form of statistical parameters, highlighting the importance of sea quarks and gluons in the electromagnetic transition. Our calculations includes the individual contribution of valence and sea (scalar, vector and tensor ) to the transition moment of baryons. The effect of flavor SU(3) symmetry and its breaking in both valence and sea quarks is studied by incorporating the strange quark mass. The strangeness in the sea is constrained by a suppression factor $$(1-C_l)^{n-1}$$ ( 1 - C l ) n - 1 , which depends upon the free energy of gluons. The computed results get affected upto 60 $$\%$$ % and exhibit the dominance of octet sea. The present work has been compared with updated experimental data and various theoretical predictions. The results obtained may offer important insights for future experimental studies.
format Article
id doaj-art-64deae7d40874b5b847f77f9b55e2ea7
institution DOAJ
issn 1434-6052
language English
publishDate 2025-03-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj-art-64deae7d40874b5b847f77f9b55e2ea72025-08-20T03:05:45ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522025-03-0185311310.1140/epjc/s10052-025-13925-4Sea-quark dynamics in decuplet ( $$\frac{3}{2}^+$$ 3 2 + ) $$\rightarrow $$ → octet ( $$\frac{1}{2}^+$$ 1 2 + ) transition quadrupole momentPreeti Bhall0Alka Upadhyay1Department of Physics and Material Science, Thapar Institute of Engineering and TechnologyDepartment of Physics and Material Science, Thapar Institute of Engineering and TechnologyAbstract We investigated the electromagnetic quadrupole transition of baryon decuplet ( $$J^P= \frac{3}{2}^+$$ J P = 3 2 + ) to octet ( $$J^P= \frac{1}{2}^+$$ J P = 1 2 + ) using the statistical framework together with the principle of detailed balance. The statistical approach assumed the expansion of hadrons in terms of various quark–gluon Fock states. By specifying the appropriate multiplicity in spin, color and flavor space, the relative probabilities of strange and non-strange quark–gluon Fock state are calculated. These probabilities further accumulated in the form of statistical parameters, highlighting the importance of sea quarks and gluons in the electromagnetic transition. Our calculations includes the individual contribution of valence and sea (scalar, vector and tensor ) to the transition moment of baryons. The effect of flavor SU(3) symmetry and its breaking in both valence and sea quarks is studied by incorporating the strange quark mass. The strangeness in the sea is constrained by a suppression factor $$(1-C_l)^{n-1}$$ ( 1 - C l ) n - 1 , which depends upon the free energy of gluons. The computed results get affected upto 60 $$\%$$ % and exhibit the dominance of octet sea. The present work has been compared with updated experimental data and various theoretical predictions. The results obtained may offer important insights for future experimental studies.https://doi.org/10.1140/epjc/s10052-025-13925-4
spellingShingle Preeti Bhall
Alka Upadhyay
Sea-quark dynamics in decuplet ( $$\frac{3}{2}^+$$ 3 2 + ) $$\rightarrow $$ → octet ( $$\frac{1}{2}^+$$ 1 2 + ) transition quadrupole moment
European Physical Journal C: Particles and Fields
title Sea-quark dynamics in decuplet ( $$\frac{3}{2}^+$$ 3 2 + ) $$\rightarrow $$ → octet ( $$\frac{1}{2}^+$$ 1 2 + ) transition quadrupole moment
title_full Sea-quark dynamics in decuplet ( $$\frac{3}{2}^+$$ 3 2 + ) $$\rightarrow $$ → octet ( $$\frac{1}{2}^+$$ 1 2 + ) transition quadrupole moment
title_fullStr Sea-quark dynamics in decuplet ( $$\frac{3}{2}^+$$ 3 2 + ) $$\rightarrow $$ → octet ( $$\frac{1}{2}^+$$ 1 2 + ) transition quadrupole moment
title_full_unstemmed Sea-quark dynamics in decuplet ( $$\frac{3}{2}^+$$ 3 2 + ) $$\rightarrow $$ → octet ( $$\frac{1}{2}^+$$ 1 2 + ) transition quadrupole moment
title_short Sea-quark dynamics in decuplet ( $$\frac{3}{2}^+$$ 3 2 + ) $$\rightarrow $$ → octet ( $$\frac{1}{2}^+$$ 1 2 + ) transition quadrupole moment
title_sort sea quark dynamics in decuplet frac 3 2 3 2 rightarrow octet frac 1 2 1 2 transition quadrupole moment
url https://doi.org/10.1140/epjc/s10052-025-13925-4
work_keys_str_mv AT preetibhall seaquarkdynamicsindecupletfrac3232rightarrowoctetfrac1212transitionquadrupolemoment
AT alkaupadhyay seaquarkdynamicsindecupletfrac3232rightarrowoctetfrac1212transitionquadrupolemoment