Forecasting PM2.5 in Malaysia Using a Hybrid Model
Abstract Predicting future PM2.5 concentrations based on knowledge obtained from past observational data is very useful for predicting air pollution. This paper aims to develop a hybrid forecasting model using an Artificial Neural Network (ANN) and Triple Exponential Smoothing (TES) on clustered PM2...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2023-06-01
|
Series: | Aerosol and Air Quality Research |
Subjects: | |
Online Access: | https://doi.org/10.4209/aaqr.230006 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Predicting future PM2.5 concentrations based on knowledge obtained from past observational data is very useful for predicting air pollution. This paper aims to develop a hybrid forecasting model using an Artificial Neural Network (ANN) and Triple Exponential Smoothing (TES) on clustered PM2.5 data from a HPR (High Pollution Region), MPR (Medium Pollution Region), and LPR (Low Pollution Region) in Malaysia. Historical PM2.5 concentrations in Malaysia from January 2018 to December 2019 were used to develop a hybrid model. The proposed hybrid model was then evaluated in terms of Mean Absolute Percentage Error (MAPE) values by comparing them with real PM2.5 data from the year 2020 in the HPR, MPR and LPR. The results showed that the hybrid model of ANN and TES presented the lowest RMSE (Root Mean Squared Error) (4.25–8.56 µg m−3), MAE (Mean Absolute Error) (2.51–4.95 µg m−3), MAPE (0.13–0.2%), and MASE (Mean Absolute Scaled Error) (1.45–2.01) in different areas of pollution compared with other models. The comparison between the ANN and TES hybrid models and the real PM2.5 data in 2020 showed that the models gave sufficient accuracy in the HPR and MPR with MAPE values of between 20% and 50%, while the LPR showed less accuracy due to the high value of MAPE of more than 50%. Overall, the hybrid model developed in this study opens up a new prediction method for air quality forecasting and is sufficiently accurate to be used as a tool for air quality management. |
---|---|
ISSN: | 1680-8584 2071-1409 |