AARS2-catalyzed lactylation induces follicle development and premature ovarian insufficiency
Abstract Lactate, a metabolite which is elevated in various developmental and pathological processes, exerts its signal through alanyl tRNA synthetases (AARS)-catalyzed protein lactylation. Herein, we report that elevated lactate and gain-of-function mitochondrial AARS (AARS2) mutations-induced hype...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Publishing Group
2025-04-01
|
| Series: | Cell Death Discovery |
| Online Access: | https://doi.org/10.1038/s41420-025-02501-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Lactate, a metabolite which is elevated in various developmental and pathological processes, exerts its signal through alanyl tRNA synthetases (AARS)-catalyzed protein lactylation. Herein, we report that elevated lactate and gain-of-function mitochondrial AARS (AARS2) mutations-induced hyper-lactylation promotes premature ovarian insufficiency (POI). Serum lactate is elevated in POI patients. POI-driving AARS2 mutations gain lactyltransferase activity. AARS2 lactylates and inactivates carnitine palmitoyl transferase 2 (CPT2), resulting in FFA accumulation that activates peroxisome proliferator-activated receptor γ (PPARγ), and potentiates follicle-stimulating hormone (FSH) to initiate follicle development. These, in synergy with the anabolites accumulation effects of AARS2, promoted lactylation-induced PDHA1 inactivation promote granular cell (GC) proliferation and primordial follicle development. GC-specific AARS2 overexpression does not affect primordial follicle number but speed up follicle depletion. AARS2 ablation or lactylation-inhibiting β-alanine treatments can prevent folliculogenesis and POI traits in mouse. These findings reveal that lactate signal drives follicle development, and inhibiting lactate signal could treat/prevent POI. |
|---|---|
| ISSN: | 2058-7716 |