Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters
A very common practice during the parameter estimation of adsorption isotherms, including the well-known Langmuir and Freundlich isotherms, consists in manipulating the isotherm equation to obtain a linear equation and estimate the model parameters using a linear least squares method. This procedure...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2013-05-01
|
Series: | Adsorption Science & Technology |
Online Access: | https://doi.org/10.1260/0263-6174.31.5.433 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841564539294842880 |
---|---|
author | Taynara Andrea Osmari Roger Gallon Marcio Schwaab Elisa Barbosa-Coutinho João Baptista Severo José Carlos Pinto |
author_facet | Taynara Andrea Osmari Roger Gallon Marcio Schwaab Elisa Barbosa-Coutinho João Baptista Severo José Carlos Pinto |
author_sort | Taynara Andrea Osmari |
collection | DOAJ |
description | A very common practice during the parameter estimation of adsorption isotherms, including the well-known Langmuir and Freundlich isotherms, consists in manipulating the isotherm equation to obtain a linear equation and estimate the model parameters using a linear least squares method. This procedure is also usually used for estimating the thermodynamic adsorption parameters, despite the fact that personal computers and software are available for prompt implementation of non-linear solutions of the original parameter-estimation problem. For this reason, the main purpose of this work is to show that the use of linear least-squares methods for estimating adsorption isotherm parameters leads to some serious drawbacks, which can be readily avoided through proper use of non-linear procedures and posterior statistical analyses of the parameter-estimation results, enhancing the quality of the obtained results. |
format | Article |
id | doaj-art-64b06dad8a8e420bb8d247a8fc8397f3 |
institution | Kabale University |
issn | 0263-6174 2048-4038 |
language | English |
publishDate | 2013-05-01 |
publisher | SAGE Publishing |
record_format | Article |
series | Adsorption Science & Technology |
spelling | doaj-art-64b06dad8a8e420bb8d247a8fc8397f32025-01-02T22:37:24ZengSAGE PublishingAdsorption Science & Technology0263-61742048-40382013-05-013110.1260/0263-6174.31.5.433Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm ParametersTaynara Andrea Osmari0Roger Gallon1Marcio Schwaab2Elisa Barbosa-Coutinho3João Baptista Severo4José Carlos Pinto5 Departamento de Engenharia Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brasil Departamento de Engenharia Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brasil Departamento de Engenharia Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brasil Departamento de Engenharia Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brasil Departamento de Engenharia Química, Universidade Federal do Sergipe, Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, S/N, São Cristovão, SE, 49100-000, Brasil Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária - CP 68502, Rio de Janeiro, RJ, 21941-972, BrasilA very common practice during the parameter estimation of adsorption isotherms, including the well-known Langmuir and Freundlich isotherms, consists in manipulating the isotherm equation to obtain a linear equation and estimate the model parameters using a linear least squares method. This procedure is also usually used for estimating the thermodynamic adsorption parameters, despite the fact that personal computers and software are available for prompt implementation of non-linear solutions of the original parameter-estimation problem. For this reason, the main purpose of this work is to show that the use of linear least-squares methods for estimating adsorption isotherm parameters leads to some serious drawbacks, which can be readily avoided through proper use of non-linear procedures and posterior statistical analyses of the parameter-estimation results, enhancing the quality of the obtained results.https://doi.org/10.1260/0263-6174.31.5.433 |
spellingShingle | Taynara Andrea Osmari Roger Gallon Marcio Schwaab Elisa Barbosa-Coutinho João Baptista Severo José Carlos Pinto Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters Adsorption Science & Technology |
title | Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters |
title_full | Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters |
title_fullStr | Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters |
title_full_unstemmed | Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters |
title_short | Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters |
title_sort | statistical analysis of linear and non linear regression for the estimation of adsorption isotherm parameters |
url | https://doi.org/10.1260/0263-6174.31.5.433 |
work_keys_str_mv | AT taynaraandreaosmari statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters AT rogergallon statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters AT marcioschwaab statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters AT elisabarbosacoutinho statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters AT joaobaptistasevero statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters AT josecarlospinto statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters |