Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters

A very common practice during the parameter estimation of adsorption isotherms, including the well-known Langmuir and Freundlich isotherms, consists in manipulating the isotherm equation to obtain a linear equation and estimate the model parameters using a linear least squares method. This procedure...

Full description

Saved in:
Bibliographic Details
Main Authors: Taynara Andrea Osmari, Roger Gallon, Marcio Schwaab, Elisa Barbosa-Coutinho, João Baptista Severo, José Carlos Pinto
Format: Article
Language:English
Published: SAGE Publishing 2013-05-01
Series:Adsorption Science & Technology
Online Access:https://doi.org/10.1260/0263-6174.31.5.433
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841564539294842880
author Taynara Andrea Osmari
Roger Gallon
Marcio Schwaab
Elisa Barbosa-Coutinho
João Baptista Severo
José Carlos Pinto
author_facet Taynara Andrea Osmari
Roger Gallon
Marcio Schwaab
Elisa Barbosa-Coutinho
João Baptista Severo
José Carlos Pinto
author_sort Taynara Andrea Osmari
collection DOAJ
description A very common practice during the parameter estimation of adsorption isotherms, including the well-known Langmuir and Freundlich isotherms, consists in manipulating the isotherm equation to obtain a linear equation and estimate the model parameters using a linear least squares method. This procedure is also usually used for estimating the thermodynamic adsorption parameters, despite the fact that personal computers and software are available for prompt implementation of non-linear solutions of the original parameter-estimation problem. For this reason, the main purpose of this work is to show that the use of linear least-squares methods for estimating adsorption isotherm parameters leads to some serious drawbacks, which can be readily avoided through proper use of non-linear procedures and posterior statistical analyses of the parameter-estimation results, enhancing the quality of the obtained results.
format Article
id doaj-art-64b06dad8a8e420bb8d247a8fc8397f3
institution Kabale University
issn 0263-6174
2048-4038
language English
publishDate 2013-05-01
publisher SAGE Publishing
record_format Article
series Adsorption Science & Technology
spelling doaj-art-64b06dad8a8e420bb8d247a8fc8397f32025-01-02T22:37:24ZengSAGE PublishingAdsorption Science & Technology0263-61742048-40382013-05-013110.1260/0263-6174.31.5.433Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm ParametersTaynara Andrea Osmari0Roger Gallon1Marcio Schwaab2Elisa Barbosa-Coutinho3João Baptista Severo4José Carlos Pinto5 Departamento de Engenharia Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brasil Departamento de Engenharia Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brasil Departamento de Engenharia Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brasil Departamento de Engenharia Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brasil Departamento de Engenharia Química, Universidade Federal do Sergipe, Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, S/N, São Cristovão, SE, 49100-000, Brasil Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária - CP 68502, Rio de Janeiro, RJ, 21941-972, BrasilA very common practice during the parameter estimation of adsorption isotherms, including the well-known Langmuir and Freundlich isotherms, consists in manipulating the isotherm equation to obtain a linear equation and estimate the model parameters using a linear least squares method. This procedure is also usually used for estimating the thermodynamic adsorption parameters, despite the fact that personal computers and software are available for prompt implementation of non-linear solutions of the original parameter-estimation problem. For this reason, the main purpose of this work is to show that the use of linear least-squares methods for estimating adsorption isotherm parameters leads to some serious drawbacks, which can be readily avoided through proper use of non-linear procedures and posterior statistical analyses of the parameter-estimation results, enhancing the quality of the obtained results.https://doi.org/10.1260/0263-6174.31.5.433
spellingShingle Taynara Andrea Osmari
Roger Gallon
Marcio Schwaab
Elisa Barbosa-Coutinho
João Baptista Severo
José Carlos Pinto
Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters
Adsorption Science & Technology
title Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters
title_full Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters
title_fullStr Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters
title_full_unstemmed Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters
title_short Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters
title_sort statistical analysis of linear and non linear regression for the estimation of adsorption isotherm parameters
url https://doi.org/10.1260/0263-6174.31.5.433
work_keys_str_mv AT taynaraandreaosmari statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters
AT rogergallon statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters
AT marcioschwaab statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters
AT elisabarbosacoutinho statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters
AT joaobaptistasevero statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters
AT josecarlospinto statisticalanalysisoflinearandnonlinearregressionfortheestimationofadsorptionisothermparameters