Conductometric and Computational Study of Chloramphenicol at Different Solvents and Temperatures

In the present work, the electrical conductivity of chloramphenicol was measured in water and methanol at different temperature degrees  293-313 K. The parameters of conductivity equivalent conductance at infinite dilution ( Λ0), the association constant (KA) and distance parameter (R) were all rec...

Full description

Saved in:
Bibliographic Details
Main Author: Amel G. Abed
Format: Article
Language:English
Published: University of Baghdad, College of Science for Women 2024-07-01
Series:مجلة بغداد للعلوم
Subjects:
Online Access:https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8239
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present work, the electrical conductivity of chloramphenicol was measured in water and methanol at different temperature degrees  293-313 K. The parameters of conductivity equivalent conductance at infinite dilution ( Λ0), the association constant (KA) and distance parameter (R) were all recorded by using Lee-Wheaton equation and the thermodynamic parameters (ΔH, ΔG, and ΔS) were calculated as well. The behavior of a compound can be predicted through computational calculations; taking 2,2-dichloro-N-[(1R,2S)-1,3-dihydroxy-1-(4-nitrophenyl) propan-2-yl] acetamide, for example. There is an abundance of theoretical information available about how this compound behaves in different solvents, such as water and methanol. The secret lies in analyzing the compound's HOMO and LUMO energies, which can be determined through advanced computational calculations using methods like AM1, PM3, and HF. The potential of the compound was different when changing the solvent and this is due to the value of energy and other theoretical factors like the molecular volume and Connolly parameters.
ISSN:2078-8665
2411-7986