Novel Distributed Power Flow Controller Topology and Its Coordinated Output Optimization in Distribution Networks
Conventional Distributed Power Flow Controllers (DPFCs) rely on third-harmonic currents to facilitate active power exchange between the series side and the system, requiring specific Δ/YN and YN/Δ transformer configurations at branch terminals. This limitation restricts their application in distribu...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/9/2148 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Conventional Distributed Power Flow Controllers (DPFCs) rely on third-harmonic currents to facilitate active power exchange between the series side and the system, requiring specific Δ/YN and YN/Δ transformer configurations at branch terminals. This limitation restricts their application in distribution networks. To overcome these constraints, this paper proposes a Novel Distributed Power Flow Controller (NDPFC) topology specifically designed for distribution networks. This design eliminates the need for third-harmonic currents and specific transformer configurations, enhancing deployment flexibility. The paper first explains the NDPFC operating principles and verifies its power flow regulation capabilities through a typical distribution network system. Furthermore, we develop electromagnetic transient mathematical models for both series and shunt components of the NDPFC, proposing a triple-loop control strategy for Series-I and Series-II control methods to enhance system robustness and control precision. A systematic stability analysis confirms the proposed controller’s robustness under various operating conditions. Simulation results demonstrate that in various distribution network scenarios, the NDPFC effectively achieves comprehensive power flow regulation, compensates three-phase imbalances, and facilitates renewable energy integration, significantly improving distribution network power quality. A comparative analysis shows that the NDPFC achieves 15% faster response times and 12% lower losses compared to conventional power flow controllers. |
|---|---|
| ISSN: | 1996-1073 |