Automated adenocarcinoma lung cancer tissue images segmentation based on clustering

Cancer is one of the main dead causes worldwide. It is re- sponsible for an approximate of 1 out of 6 deaths globally and lung cancer is along breast cancer, the most common types of cancer in the population, which confirms the importance of studies associated with it. This work presents an approac...

Full description

Saved in:
Bibliographic Details
Main Authors: Bryan Cervantes-Ramirez, Francisco Siles
Format: Article
Language:English
Published: Instituto Tecnológico de Costa Rica 2022-11-01
Series:Tecnología en Marcha
Subjects:
Online Access:https://172.20.14.50/index.php/tec_marcha/article/view/6442
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer is one of the main dead causes worldwide. It is re- sponsible for an approximate of 1 out of 6 deaths globally and lung cancer is along breast cancer, the most common types of cancer in the population, which confirms the importance of studies associated with it. This work presents an approach toward lung cancer histological tissue images segmentation based on colour. The proposed method for the segmentation is K-means clustering, providing promising results that may become as an assistance for pathologists, as it can help them reduce the time consumed reviewing the slides and giving a more objective perspective in order to provide a diagnose and specific treatment.
ISSN:0379-3982
2215-3241