First Application of a New Rapid Method of Age Determination in European Anchovy (<i>Engraulis encrasicolus</i>) by Fourier Transform Near-Infrared Spectroscopy
Age determination through reading annual rings in whole otoliths is a complicated, time-consuming task that can lead to errors in population age structure, negatively affecting marine fish management plans. Recently, Fourier transform near-infrared spectroscopy (FT-NIRS) has been successfully used t...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Journal of Marine Science and Engineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-1312/13/5/961 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Age determination through reading annual rings in whole otoliths is a complicated, time-consuming task that can lead to errors in population age structure, negatively affecting marine fish management plans. Recently, Fourier transform near-infrared spectroscopy (FT-NIRS) has been successfully used to evaluate annual age, at least in several long-life fish species. European anchovy (<i>Engraulis encrasicolus</i>) is an important pelagic species for its ecological role and socioeconomic value. In the Mediterranean Sea, anchovy stocks are regularly monitored for assessment purposes, and fish age is calculated by traditional otolith reading. In the present study, anchovies, caught over a decade (2012 to 2023) during on-board surveys in four different areas (i.e., North Tyrrhenian, South Tyrrhenian, North of Sicily, and Strait of Sicily), provided an otolith collection used to acquire absorption spectra by FT-NIRS. These spectra were processed to optimize calibration models, and the best linear models obtained revealed a good predictability for anchovy annual age (coefficient of determination of 0.90, mean squared error 0.3 years, bias < 0.001 years). The calibration model developed for all regions combined proved more robust than the models for each area, demonstrating its efficacy for the entire study area. FT-NIRS analyses proved suitable for predicting age, when applied to <i>E. encrasicolus</i> individuals within the age range of 0 to 3, also when compared to traditional aging methods. Moreover, this methodology improved the standardization of age estimates. Finally, this preliminary study encourages the further application of FT-NIRS also to short-life pelagic species involved in stock assessment plans. |
|---|---|
| ISSN: | 2077-1312 |