Bacillus coagulans alleviates hepatic injury caused by Klebsiella pneumoniae in rabbits.

<h4>Background</h4>As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probi...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoguang Chen, Wenjuan Wei, Fan Yang, Jianing Wang, Qiongxia Lv, Yumei Liu, Ziqiang Zhang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0317252
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<h4>Background</h4>As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.<h4>Aim</h4>The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.<h4>Methods</h4>In this study, the rabbits were initially pretreated with varying doses of BC (1×106, 5×106, and 1×107 CFU/g), followed by a challenge with KP at a concentration of 1011 CFU/mL. Liver tissues were harvested and processed for histological assessment using H&E and VG stains to assess structural alterations. Biochemical assays were employed to quantify the enzymatic activities of T-SOD and GSH-Px, as well as the MDA content. Furthermore, ELISA was utilized to detect the levels of inflammatory cytokine (IL-10, IL-6, IL-1β and TNF-α) and apoptotic-related gene (Bcl-2, Bax).<h4>Results</h4>Morphological observation indicated that BC can effectively mitigate KP-induced hepatic sinusoidal dilatation and congestion, as well as ameliorate the degree of hepatic fibrosis. Further analysis showed that BC significantly lowered MDA level in KP-treated rabbits, while enhanced the activities of T-SOD and GSH-Px. Additionally, ELISA result showed that BC pretreatment significantly reduced the levels of pro-inflammatory cytokines TNF-a, IL-6, IL-1β and pro-apoptotic gene Bax, while increasing the levels of anti-inflammatory cytokine IL-10 and anti-apoptotic gene Bcl-2 in KP-treated rabbits.<h4>Conclusion</h4>Above data indicate that BC supplementation effectively attenuated oxidative stress and inflammatory response induced by KP through augmenting the activities of antioxidant enzymes and diminishing the levels of pro-inflammatory factors. Furthermore, it reduced the Bax/Bcl-2 ratio in the liver, thereby inhibiting KP-induced apoptosis. The treatment group receiving 5x106 CFU/g BC benefitted most from the protective effect.
ISSN:1932-6203