Classic (Nonquantic) Algorithm for Observations and Measurements Based on Statistical Strategies of Particles Fields

Our knowledge about surroundings can be achieved by observations and measurements but both are influenced by errors (noise). Therefore one of the first tasks is to try to eliminate the noise by constructing instruments with high accuracy. But any real observed and measured system is characterized by...

Full description

Saved in:
Bibliographic Details
Main Authors: D. Savastru, Simona Dontu, Roxana Savastru, Andreea Rodica Sterian
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2013/876870
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our knowledge about surroundings can be achieved by observations and measurements but both are influenced by errors (noise). Therefore one of the first tasks is to try to eliminate the noise by constructing instruments with high accuracy. But any real observed and measured system is characterized by natural limits due to the deterministic nature of the measured information. The present work is dedicated to the identification of these limits. We have analyzed some algorithms for selection and estimation based on statistical hypothesis and we have developed a theoretical method for their validation. A classic (non-quantic) algorithm for observations and measurements based on statistical strategies of optical field is presented in detail. A generalized statistical strategy for observations and measurements on the nuclear particles, is based on these results, taking into account the particular type of statistics resulting from the measuring process also.
ISSN:1687-7357
1687-7365