Advancing TinyML in IoT: A Holistic System-Level Perspective for Resource-Constrained AI

Resource-constrained devices, including low-power Internet of Things (IoT) nodes, microcontrollers, and edge computing platforms, have increasingly become the focal point for deploying on-device intelligence. By integrating artificial intelligence (AI) closer to data sources, these systems aim to ac...

Full description

Saved in:
Bibliographic Details
Main Authors: Leandro Antonio Pazmiño Ortiz, Ivonne Fernanda Maldonado Soliz, Vanessa Katherine Guevara Balarezo
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Future Internet
Subjects:
Online Access:https://www.mdpi.com/1999-5903/17/6/257
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resource-constrained devices, including low-power Internet of Things (IoT) nodes, microcontrollers, and edge computing platforms, have increasingly become the focal point for deploying on-device intelligence. By integrating artificial intelligence (AI) closer to data sources, these systems aim to achieve faster responses, reduce bandwidth usage, and preserve privacy. Nevertheless, implementing AI in limited hardware environments poses substantial challenges in terms of computation, energy efficiency, model complexity, and reliability. This paper provides a comprehensive review of state-of-the-art methodologies, examining how recent advances in model compression, TinyML frameworks, and federated learning paradigms are enabling AI in tightly constrained devices. We highlight both established and emergent techniques for optimizing resource usage while addressing security, privacy, and ethical concerns. We then illustrate opportunities in key application domains—such as healthcare, smart cities, agriculture, and environmental monitoring—where localized intelligence on resource-limited devices can have broad societal impact. By exploring architectural co-design strategies, algorithmic innovations, and pressing research gaps, this paper offers a roadmap for future investigations and industrial applications of AI in resource-constrained devices.
ISSN:1999-5903