Influence of Xanthan gum on the engineering properties and microstructure of expansive soils
The application of novel materials that enhance soil engineering properties while maintaining vegetation growth represents an innovative strategy for ecological protection engineering of expansive soil slopes. Laboratory tests, including wetting and drying cycle tests, direct shear tests, unconfined...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-05-01
|
| Series: | Frontiers in Materials |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fmats.2025.1598601/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850136735080513536 |
|---|---|
| author | Miao Ouyang Hongri Zhang Hongri Zhang Guiyao Wang Youjun Li Jianping Song |
| author_facet | Miao Ouyang Hongri Zhang Hongri Zhang Guiyao Wang Youjun Li Jianping Song |
| author_sort | Miao Ouyang |
| collection | DOAJ |
| description | The application of novel materials that enhance soil engineering properties while maintaining vegetation growth represents an innovative strategy for ecological protection engineering of expansive soil slopes. Laboratory tests, including wetting and drying cycle tests, direct shear tests, unconfined swelling ratio tests, and vegetation growth tests, were conducted to analyze the effects of xanthan gum on both engineering and vegetation-related properties of expansive soil. The feasibility of xanthan gum for soil improvement was systematically evaluated. The interaction mechanism between xanthan gum and expansive soil was elucidated through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. Results demonstrated that xanthan gum effectively inhibited crack development and strength loss. With increasing xanthan gum content, the crack area ratio decreased logarithmically by up to 58.62%, while cohesion increased by 82.96%. The unconfined swelling ratio exhibited a linear reduction, with a maximum decrease of 43.58%. Notably, xanthan gum accelerated seed germination rate but did not significantly affect long-term vegetation growth. Mechanistically, xanthan gum improved soil properties via two pathways: (1) forming bridging structures between soil particles to enhance cohesion and tensile strength; (2) filling soil voids and generating a polymer film to inhibit water-clay mineral interactions, thereby reducing hydration membrane thickness. These findings offer both theoretical insights and practical guidelines for applying xanthan gum in ecological protection engineering of expansive soil slopes. |
| format | Article |
| id | doaj-art-6388e1bfe98f4a498cf225f80e4316db |
| institution | OA Journals |
| issn | 2296-8016 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | Frontiers Media S.A. |
| record_format | Article |
| series | Frontiers in Materials |
| spelling | doaj-art-6388e1bfe98f4a498cf225f80e4316db2025-08-20T02:31:03ZengFrontiers Media S.A.Frontiers in Materials2296-80162025-05-011210.3389/fmats.2025.15986011598601Influence of Xanthan gum on the engineering properties and microstructure of expansive soilsMiao Ouyang0Hongri Zhang1Hongri Zhang2Guiyao Wang3Youjun Li4Jianping Song5School of Civil Engineering, Changsha University of Science and Technology, Changsha, Hunan, ChinaGuangxi Transportation Science and Technology Group Co., Ltd., Nanning, Guanxi, ChinaDepartment of Civil Engineering, Shanghai Jiao Tong University, Shanghai, ChinaSchool of Civil Engineering, Changsha University of Science and Technology, Changsha, Hunan, ChinaGuangxi Transportation Science and Technology Group Co., Ltd., Nanning, Guanxi, ChinaGuangxi Transportation Science and Technology Group Co., Ltd., Nanning, Guanxi, ChinaThe application of novel materials that enhance soil engineering properties while maintaining vegetation growth represents an innovative strategy for ecological protection engineering of expansive soil slopes. Laboratory tests, including wetting and drying cycle tests, direct shear tests, unconfined swelling ratio tests, and vegetation growth tests, were conducted to analyze the effects of xanthan gum on both engineering and vegetation-related properties of expansive soil. The feasibility of xanthan gum for soil improvement was systematically evaluated. The interaction mechanism between xanthan gum and expansive soil was elucidated through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. Results demonstrated that xanthan gum effectively inhibited crack development and strength loss. With increasing xanthan gum content, the crack area ratio decreased logarithmically by up to 58.62%, while cohesion increased by 82.96%. The unconfined swelling ratio exhibited a linear reduction, with a maximum decrease of 43.58%. Notably, xanthan gum accelerated seed germination rate but did not significantly affect long-term vegetation growth. Mechanistically, xanthan gum improved soil properties via two pathways: (1) forming bridging structures between soil particles to enhance cohesion and tensile strength; (2) filling soil voids and generating a polymer film to inhibit water-clay mineral interactions, thereby reducing hydration membrane thickness. These findings offer both theoretical insights and practical guidelines for applying xanthan gum in ecological protection engineering of expansive soil slopes.https://www.frontiersin.org/articles/10.3389/fmats.2025.1598601/fullexpansive soilXanthan gumwetting-drying cyclesmechanical propertiesmicrostructure |
| spellingShingle | Miao Ouyang Hongri Zhang Hongri Zhang Guiyao Wang Youjun Li Jianping Song Influence of Xanthan gum on the engineering properties and microstructure of expansive soils Frontiers in Materials expansive soil Xanthan gum wetting-drying cycles mechanical properties microstructure |
| title | Influence of Xanthan gum on the engineering properties and microstructure of expansive soils |
| title_full | Influence of Xanthan gum on the engineering properties and microstructure of expansive soils |
| title_fullStr | Influence of Xanthan gum on the engineering properties and microstructure of expansive soils |
| title_full_unstemmed | Influence of Xanthan gum on the engineering properties and microstructure of expansive soils |
| title_short | Influence of Xanthan gum on the engineering properties and microstructure of expansive soils |
| title_sort | influence of xanthan gum on the engineering properties and microstructure of expansive soils |
| topic | expansive soil Xanthan gum wetting-drying cycles mechanical properties microstructure |
| url | https://www.frontiersin.org/articles/10.3389/fmats.2025.1598601/full |
| work_keys_str_mv | AT miaoouyang influenceofxanthangumontheengineeringpropertiesandmicrostructureofexpansivesoils AT hongrizhang influenceofxanthangumontheengineeringpropertiesandmicrostructureofexpansivesoils AT hongrizhang influenceofxanthangumontheengineeringpropertiesandmicrostructureofexpansivesoils AT guiyaowang influenceofxanthangumontheengineeringpropertiesandmicrostructureofexpansivesoils AT youjunli influenceofxanthangumontheengineeringpropertiesandmicrostructureofexpansivesoils AT jianpingsong influenceofxanthangumontheengineeringpropertiesandmicrostructureofexpansivesoils |