Decoding concrete’s environmental performance: A detailed analysis of global EPDs across the entire life cycle
Environmental Product Declarations (EPDs) for concrete are essential tools to quantify the environmental impact of this versatile building material throughout its life cycle, supporting sustainable choices in construction. Concrete is made up of raw materials like cement, water, aggregates, additive...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
EDP Sciences
2025-01-01
|
| Series: | MATEC Web of Conferences |
| Online Access: | https://www.matec-conferences.org/articles/matecconf/pdf/2025/03/matecconf_cs2025_13001.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Environmental Product Declarations (EPDs) for concrete are essential tools to quantify the environmental impact of this versatile building material throughout its life cycle, supporting sustainable choices in construction. Concrete is made up of raw materials like cement, water, aggregates, additives, and admixtures, which can be mixed in diverse ways. This variability often necessitates site-specific EPDs, as emissions and environmental impacts depend greatly on cement type, transport routes, and specific production processes. This study analyses various data sources, focusing on EPDs according to ISO 14025 and EN 15804. The life cycle phases A1-A3, B1-B7, C1-C4 and D are considered and compared. The results demonstrate that factors such as scenario assumptions, methodological choices, and allocation procedures significantly influence concrete’s environmental impact. Transparent EPDs improve assessment reliability, while allocation methods, especially in phases D and end-of-life, significantly influence reported benefits, underscoring the importance of careful allocation for accurate impact evaluations. Improved standardisation, transparency, and alignment with EN 16757 would enhance EPD comparability and reliability. Overall, the study identifies key parameters such as recycling potential, production stage and allocation methods as substantial factors in the environmental performance of concrete. |
|---|---|
| ISSN: | 2261-236X |