Improving the Recognition of Bamboo Color and Spots Using a Novel YOLO Model
The sheaths of bamboo shoots, characterized by distinct colors and spotting patterns, are key phenotypic markers influencing species classification, market value, and genetic studies. This study introduces YOLOv8-BS, a deep learning model optimized for detecting these traits in <i>Chimonobambu...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Plants |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2223-7747/14/15/2287 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The sheaths of bamboo shoots, characterized by distinct colors and spotting patterns, are key phenotypic markers influencing species classification, market value, and genetic studies. This study introduces YOLOv8-BS, a deep learning model optimized for detecting these traits in <i>Chimonobambusa utilis</i> using a dataset from Jinfo Mountain, China. Enhanced by data augmentation techniques, including translation, flipping, and contrast adjustment, YOLOv8-BS outperformed benchmark models (YOLOv7, YOLOv5, YOLOX, and Faster R-CNN) in color and spot detection. For color detection, it achieved a precision of 85.9%, a recall of 83.4%, an F1-score of 84.6%, and an average precision (AP) of 86.8%. For spot detection, it recorded a precision of 90.1%, a recall of 92.5%, an F1-score of 91.1%, and an AP of 96.1%. These results demonstrate superior accuracy and robustness, enabling precise phenotypic analysis for bamboo germplasm evaluation and genetic diversity studies. YOLOv8-BS supports precision agriculture by providing a scalable tool for sustainable bamboo-based industries. Future improvements could enhance model adaptability for fine-grained varietal differences and real-time applications. |
|---|---|
| ISSN: | 2223-7747 |