Locally conformal symplectic manifolds

A locally conformal symplectic (l. c. s.) manifold is a pair (M2n,Ω) where M2n(n>1) is a connected differentiable manifold, and Ω a nondegenerate 2-form on M such that M=⋃αUα (Uα- open subsets). Ω/Uα=eσαΩα, σα:Uα→ℝ, dΩα=0. Equivalently, dΩ=ω∧Ω for some closed 1-form ω. L. c. s. manifolds can be...

Full description

Saved in:
Bibliographic Details
Main Author: Izu Vaisman
Format: Article
Language:English
Published: Wiley 1985-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171285000564
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832563560149942272
author Izu Vaisman
author_facet Izu Vaisman
author_sort Izu Vaisman
collection DOAJ
description A locally conformal symplectic (l. c. s.) manifold is a pair (M2n,Ω) where M2n(n>1) is a connected differentiable manifold, and Ω a nondegenerate 2-form on M such that M=⋃αUα (Uα- open subsets). Ω/Uα=eσαΩα, σα:Uα→ℝ, dΩα=0. Equivalently, dΩ=ω∧Ω for some closed 1-form ω. L. c. s. manifolds can be seen as generalized phase spaces of Hamiltonian dynamical systems since the form of the Hamilton equations is, in fact, preserved by homothetic canonical transformations. The paper discusses first Hamiltonian vector fields, and infinitesimal automorphisms (i. a.) on l. c. s. manifolds. If (M,Ω) has an i. a. X such that ω(X)≠0, we say that M is of the first kind and Ω assumes the particular form Ω=dθ−ω∧θ. Such an M is a 2-contact manifold with the structure forms (ω,θ), and it has a vertical 2-dimensional foliation V. If V is regular, we can give a fibration theorem which shows that M is a T2-principal bundle over a symplectic manifold. Particularly, V is regular for some homogeneous l. c. s, manifolds, and this leads to a general construction of compact homogeneous l. c. s, manifolds. Various related geometric results, including reductivity theorems for Lie algebras of i. a. are also given. Most of the proofs are adaptations of corresponding proofs in symplectic and contact geometry. The paper ends with an Appendix which states an analogous fibration theorem in Riemannian geometry.
format Article
id doaj-art-62f23be284b3415cb6fd5dbdde52b0cb
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1985-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-62f23be284b3415cb6fd5dbdde52b0cb2025-02-03T01:13:10ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251985-01-018352153610.1155/S0161171285000564Locally conformal symplectic manifoldsIzu Vaisman0Department of Mathematics, University of Haifa, IsraelA locally conformal symplectic (l. c. s.) manifold is a pair (M2n,Ω) where M2n(n>1) is a connected differentiable manifold, and Ω a nondegenerate 2-form on M such that M=⋃αUα (Uα- open subsets). Ω/Uα=eσαΩα, σα:Uα→ℝ, dΩα=0. Equivalently, dΩ=ω∧Ω for some closed 1-form ω. L. c. s. manifolds can be seen as generalized phase spaces of Hamiltonian dynamical systems since the form of the Hamilton equations is, in fact, preserved by homothetic canonical transformations. The paper discusses first Hamiltonian vector fields, and infinitesimal automorphisms (i. a.) on l. c. s. manifolds. If (M,Ω) has an i. a. X such that ω(X)≠0, we say that M is of the first kind and Ω assumes the particular form Ω=dθ−ω∧θ. Such an M is a 2-contact manifold with the structure forms (ω,θ), and it has a vertical 2-dimensional foliation V. If V is regular, we can give a fibration theorem which shows that M is a T2-principal bundle over a symplectic manifold. Particularly, V is regular for some homogeneous l. c. s, manifolds, and this leads to a general construction of compact homogeneous l. c. s, manifolds. Various related geometric results, including reductivity theorems for Lie algebras of i. a. are also given. Most of the proofs are adaptations of corresponding proofs in symplectic and contact geometry. The paper ends with an Appendix which states an analogous fibration theorem in Riemannian geometry.http://dx.doi.org/10.1155/S0161171285000564locally conformal symplectic manifolds-contact manifoldBoothby-Wang fibration.
spellingShingle Izu Vaisman
Locally conformal symplectic manifolds
International Journal of Mathematics and Mathematical Sciences
locally conformal symplectic manifold
s-contact manifold
Boothby-Wang fibration.
title Locally conformal symplectic manifolds
title_full Locally conformal symplectic manifolds
title_fullStr Locally conformal symplectic manifolds
title_full_unstemmed Locally conformal symplectic manifolds
title_short Locally conformal symplectic manifolds
title_sort locally conformal symplectic manifolds
topic locally conformal symplectic manifold
s-contact manifold
Boothby-Wang fibration.
url http://dx.doi.org/10.1155/S0161171285000564
work_keys_str_mv AT izuvaisman locallyconformalsymplecticmanifolds