Optical sorting: past, present and future

Abstract Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical...

Full description

Saved in:
Bibliographic Details
Main Authors: Meng Yang, Yuzhi Shi, Qinghua Song, Zeyong Wei, Xiong Dun, Zhiming Wang, Zhanshan Wang, Cheng-Wei Qiu, Hui Zhang, Xinbin Cheng
Format: Article
Language:English
Published: Nature Publishing Group 2025-02-01
Series:Light: Science & Applications
Online Access:https://doi.org/10.1038/s41377-024-01734-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as passive and active sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.
ISSN:2047-7538