Protective Role of the Podocyte IL-15 / STAT5 Pathway in Focal Segmental Glomerulosclerosis
Introduction: During glomerular diseases, podocyte-specific pathways can modulate the intensity of histological disease and prognosis. The therapeutic targeting of these pathways could thus improve the management and prognosis of kidney diseases. The Janus Kinase/Signal Transducer and Activator of T...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-04-01
|
| Series: | Kidney International Reports |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S246802492400010X |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Introduction: During glomerular diseases, podocyte-specific pathways can modulate the intensity of histological disease and prognosis. The therapeutic targeting of these pathways could thus improve the management and prognosis of kidney diseases. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway, classically described in immune cells, has been recently described in detail in intrinsic kidney cells. Methods: We describe STAT5 expression in human kidney biopsies from patients with focal segmental glomerulosclerosis (FSGS) and studied mice with a podocyte-specific Stat5 deletion in experimental glomerular diseases. Results: Here, we show, for the first time, that STAT5 is activated in human podocytes in FSGS. In addition, podocyte-specific Stat5 inactivation aggravates the structural and functional alterations in a mouse model of FSGS. This could be due, at least in part, to an inhibition of autophagic flux. Finally, interleukin 15 (IL-15), a classical activator of STAT5 in immune cells, increases STAT5 phosphorylation in human podocytes, and its administration alleviates glomerular injury in vivo by maintaining autophagic flux in podocytes. Conclusion: Activating podocyte STAT5 with commercially available IL-15 represents a potential new therapeutic avenue for FSGS. |
|---|---|
| ISSN: | 2468-0249 |