A Systematic and General Machine Learning Approach to Build a Consistent Data Set from Different Experiments: Application to the Thermal Conductivity of Methane

Saved in:
Bibliographic Details
Main Authors: Matheus Máximo-Canadas, Julio Cesar Duarte, Jakler Nichele, Leonardo Santos de Brito Alves, Luiz Octavio Vieira Pereira, Rogerio Ramos, Itamar Borges
Format: Article
Language:English
Published: American Chemical Society 2025-03-01
Series:ACS Engineering Au
Online Access:https://doi.org/10.1021/acsengineeringau.5c00001
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849688526306672640
author Matheus Máximo-Canadas
Julio Cesar Duarte
Jakler Nichele
Leonardo Santos de Brito Alves
Luiz Octavio Vieira Pereira
Rogerio Ramos
Itamar Borges
author_facet Matheus Máximo-Canadas
Julio Cesar Duarte
Jakler Nichele
Leonardo Santos de Brito Alves
Luiz Octavio Vieira Pereira
Rogerio Ramos
Itamar Borges
author_sort Matheus Máximo-Canadas
collection DOAJ
format Article
id doaj-art-626bdf74977b4bccbf5fde3e34b7171e
institution DOAJ
issn 2694-2488
language English
publishDate 2025-03-01
publisher American Chemical Society
record_format Article
series ACS Engineering Au
spelling doaj-art-626bdf74977b4bccbf5fde3e34b7171e2025-08-20T03:21:59ZengAmerican Chemical SocietyACS Engineering Au2694-24882025-03-015322623310.1021/acsengineeringau.5c00001A Systematic and General Machine Learning Approach to Build a Consistent Data Set from Different Experiments: Application to the Thermal Conductivity of MethaneMatheus Máximo-Canadas0Julio Cesar Duarte1Jakler Nichele2Leonardo Santos de Brito Alves3Luiz Octavio Vieira Pereira4Rogerio Ramos5Itamar Borges6Departamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ, BrasilDepartamento de Computação, Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ, BrasilDepartamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ, BrasilLaboratório de Dinâmica dos Fluidos Computacional, Departamento de Engenharia Mecânica, Universidade Federal Fluminense (UFF), Niterói, RJ, BrasilCentro de Pesquisas, Desenvolvimento e Inovação Leopoldo Américo Miguez de Mello - CENPES/PETROBRAS Rua Avenida Horácio Macedo, Rio de Janeiro, RJ, BrasilCentro Tecnológico, Departamento de Engenharia Mecânica, Universidade Federal do Espírito Santo (UFES), Vitória, ES, BrasilDepartamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ, Brasilhttps://doi.org/10.1021/acsengineeringau.5c00001
spellingShingle Matheus Máximo-Canadas
Julio Cesar Duarte
Jakler Nichele
Leonardo Santos de Brito Alves
Luiz Octavio Vieira Pereira
Rogerio Ramos
Itamar Borges
A Systematic and General Machine Learning Approach to Build a Consistent Data Set from Different Experiments: Application to the Thermal Conductivity of Methane
ACS Engineering Au
title A Systematic and General Machine Learning Approach to Build a Consistent Data Set from Different Experiments: Application to the Thermal Conductivity of Methane
title_full A Systematic and General Machine Learning Approach to Build a Consistent Data Set from Different Experiments: Application to the Thermal Conductivity of Methane
title_fullStr A Systematic and General Machine Learning Approach to Build a Consistent Data Set from Different Experiments: Application to the Thermal Conductivity of Methane
title_full_unstemmed A Systematic and General Machine Learning Approach to Build a Consistent Data Set from Different Experiments: Application to the Thermal Conductivity of Methane
title_short A Systematic and General Machine Learning Approach to Build a Consistent Data Set from Different Experiments: Application to the Thermal Conductivity of Methane
title_sort systematic and general machine learning approach to build a consistent data set from different experiments application to the thermal conductivity of methane
url https://doi.org/10.1021/acsengineeringau.5c00001
work_keys_str_mv AT matheusmaximocanadas asystematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT juliocesarduarte asystematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT jaklernichele asystematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT leonardosantosdebritoalves asystematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT luizoctaviovieirapereira asystematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT rogerioramos asystematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT itamarborges asystematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT matheusmaximocanadas systematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT juliocesarduarte systematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT jaklernichele systematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT leonardosantosdebritoalves systematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT luizoctaviovieirapereira systematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT rogerioramos systematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane
AT itamarborges systematicandgeneralmachinelearningapproachtobuildaconsistentdatasetfromdifferentexperimentsapplicationtothethermalconductivityofmethane