Robust Transient Stability Emergency Control Considering Wind Power Uncertainties

Transient stability emergency control (TSEC) enhances power system transient stability during large disturbances but faces challenges in the high-penetration wind power grid where the wind power forecast error still cannot be ignored even with state-of-the-art forecasting methods. In this paper, the...

Full description

Saved in:
Bibliographic Details
Main Authors: Yunfei Ma, Xin Wang, Guangchao Geng, Quanyuan Jiang
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10092574/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transient stability emergency control (TSEC) enhances power system transient stability during large disturbances but faces challenges in the high-penetration wind power grid where the wind power forecast error still cannot be ignored even with state-of-the-art forecasting methods. In this paper, the TSEC problem is modeled as robust nonlinear programming with the objective of maintaining rotor angle stability by generator tripping and load shedding while the uncertain wind power outputs are regarded as intervals. Interval programming is employed to solve the robust TSEC problem where the trajectory sensitivity analysis is applied to approximate the bounds of transient stability constraints. Numerical results on two test systems demonstrate that the proposed method improves computational efficiency and shows good performance on robustness.
ISSN:2169-3536