Synchronization of Chaotic Systems with Huygens-like Coupling

One of the earliest reports on synchronization of inert systems dates back to the time of the Dutch scientist Christiaan Huygens, who discovered that a pair of pendulum clocks coupled through a wooden bar oscillate in harmony. A remarkable feature in Huygens’ experiment is that different synchronous...

Full description

Saved in:
Bibliographic Details
Main Authors: Jonatan Pena Ramirez, Adrian Arellano-Delgado, Rodrigo Méndez-Ramírez, Hector Javier Estrada-Garcia
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/20/3177
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850206099634913280
author Jonatan Pena Ramirez
Adrian Arellano-Delgado
Rodrigo Méndez-Ramírez
Hector Javier Estrada-Garcia
author_facet Jonatan Pena Ramirez
Adrian Arellano-Delgado
Rodrigo Méndez-Ramírez
Hector Javier Estrada-Garcia
author_sort Jonatan Pena Ramirez
collection DOAJ
description One of the earliest reports on synchronization of inert systems dates back to the time of the Dutch scientist Christiaan Huygens, who discovered that a pair of pendulum clocks coupled through a wooden bar oscillate in harmony. A remarkable feature in Huygens’ experiment is that different synchronous behaviors may be observed by just changing a parameter in the coupling. Motivated by this, in this paper, we propose a novel synchronization scheme for chaotic oscillators, in which the design of the coupling is inspired in Huygens’ experiment. It is demonstrated that the coupled oscillators may exhibit not only complete synchronization, but also mixed synchronization—some states synchronize in anti-phase whereas other states synchronize in-phase—depending on a single parameter of the coupling. Additionally, the stability of the synchronous solution is investigated by using the master stability function approach and the largest transverse Lyapunov exponent. The Lorenz system is considered as particular application example, and the performance of the proposed synchronization scheme is illustrated with computer simulations and validated by means of experiments using electronic circuits.
format Article
id doaj-art-61cb8a09824f43a3843e17eb7a68f3fa
institution OA Journals
issn 2227-7390
language English
publishDate 2024-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-61cb8a09824f43a3843e17eb7a68f3fa2025-08-20T02:10:56ZengMDPI AGMathematics2227-73902024-10-011220317710.3390/math12203177Synchronization of Chaotic Systems with Huygens-like CouplingJonatan Pena Ramirez0Adrian Arellano-Delgado1Rodrigo Méndez-Ramírez2Hector Javier Estrada-Garcia3Applied Physics Division, Department of Electronics and Telecommunications, CICESE, Carr. Ensenada-Tijuana 3918, Zona Playitas, Ensenada 22860, MexicoNational Council of Humanities, Science and Technology (CONAHCYT), Ciudad de Mexico 03940, MexicoParadigm Advance Research Center (PARC), 5340 Canotek Rd., Unit #4, Ottawa, ON K1J9C6, CanadaEngineering Division Campus Irapuato-Salamanca, University of Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8, Com. Palo Blanco, Salamanca 36885, MexicoOne of the earliest reports on synchronization of inert systems dates back to the time of the Dutch scientist Christiaan Huygens, who discovered that a pair of pendulum clocks coupled through a wooden bar oscillate in harmony. A remarkable feature in Huygens’ experiment is that different synchronous behaviors may be observed by just changing a parameter in the coupling. Motivated by this, in this paper, we propose a novel synchronization scheme for chaotic oscillators, in which the design of the coupling is inspired in Huygens’ experiment. It is demonstrated that the coupled oscillators may exhibit not only complete synchronization, but also mixed synchronization—some states synchronize in anti-phase whereas other states synchronize in-phase—depending on a single parameter of the coupling. Additionally, the stability of the synchronous solution is investigated by using the master stability function approach and the largest transverse Lyapunov exponent. The Lorenz system is considered as particular application example, and the performance of the proposed synchronization scheme is illustrated with computer simulations and validated by means of experiments using electronic circuits.https://www.mdpi.com/2227-7390/12/20/3177synchronizationmixed-synchronizationchaosHuygens’ couplingelectronic circuit
spellingShingle Jonatan Pena Ramirez
Adrian Arellano-Delgado
Rodrigo Méndez-Ramírez
Hector Javier Estrada-Garcia
Synchronization of Chaotic Systems with Huygens-like Coupling
Mathematics
synchronization
mixed-synchronization
chaos
Huygens’ coupling
electronic circuit
title Synchronization of Chaotic Systems with Huygens-like Coupling
title_full Synchronization of Chaotic Systems with Huygens-like Coupling
title_fullStr Synchronization of Chaotic Systems with Huygens-like Coupling
title_full_unstemmed Synchronization of Chaotic Systems with Huygens-like Coupling
title_short Synchronization of Chaotic Systems with Huygens-like Coupling
title_sort synchronization of chaotic systems with huygens like coupling
topic synchronization
mixed-synchronization
chaos
Huygens’ coupling
electronic circuit
url https://www.mdpi.com/2227-7390/12/20/3177
work_keys_str_mv AT jonatanpenaramirez synchronizationofchaoticsystemswithhuygenslikecoupling
AT adrianarellanodelgado synchronizationofchaoticsystemswithhuygenslikecoupling
AT rodrigomendezramirez synchronizationofchaoticsystemswithhuygenslikecoupling
AT hectorjavierestradagarcia synchronizationofchaoticsystemswithhuygenslikecoupling