Predetection squeezing as a resource for high-dimensional Bell-state measurements

Bell measurements, entailing the projection onto one of the Bell states, play a key role in quantum information and communication, where the outcome of a variety of protocols crucially depends on the success probability of such measurements. Although in the case of qubit systems, Bell measurements c...

Full description

Saved in:
Bibliographic Details
Main Authors: Luca Bianchi, Carlo Marconi, Jan Sperling, Davide Bacco
Format: Article
Language:English
Published: American Physical Society 2025-04-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.7.023038
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bell measurements, entailing the projection onto one of the Bell states, play a key role in quantum information and communication, where the outcome of a variety of protocols crucially depends on the success probability of such measurements. Although in the case of qubit systems, Bell measurements can be implemented using only linear optical components, the same result is no longer true for qudits, where at least the use of ancillary photons is required. In order to circumvent this limitation, one possibility is to introduce nonlinear effects. In this work, we adopt the latter approach and propose a scalable Bell measurement scheme for high-dimensional states, exploiting multiple squeezer devices applied to a linear optical circuit for discriminating the different Bell states. Our approach does not require ancillary photons, is not limited by the dimension of the quantum states, and is experimentally scalable, thus paving the way toward the realization of an effective high-dimensional Bell measurement.
ISSN:2643-1564