Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method
We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP). We obtained the energy eigenvalues and the total normalized wave function. We employed Hel...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2017-01-01
|
| Series: | Advances in High Energy Physics |
| Online Access: | http://dx.doi.org/10.1155/2017/9671816 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849411142813745152 |
|---|---|
| author | Ituen B. Okon Oyebola Popoola Cecilia N. Isonguyo |
| author_facet | Ituen B. Okon Oyebola Popoola Cecilia N. Isonguyo |
| author_sort | Ituen B. Okon |
| collection | DOAJ |
| description | We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP). We obtained the energy eigenvalues and the total normalized wave function. We employed Hellmann-Feynman Theorem (HFT) to compute expectation values r-2, r-1, T, and p2 for four different diatomic molecules: hydrogen molecule (H2), lithium hydride molecule (LiH), hydrogen chloride molecule (HCl), and carbon (II) oxide molecule. The resulting energy equation reduces to three well-known potentials which are as follows: Hulthen potential, Yukawa potential, and inversely quadratic potential. The bound state energies for Hulthen and Yukawa potentials agree with the result reported in existing literature. We obtained the numerical bound state energies of the expectation values by implementing MATLAB algorithm using experimentally determined spectroscopic constant for the different diatomic molecules. We developed mathematica programming to obtain wave function and probability density plots for different orbital angular quantum number. |
| format | Article |
| id | doaj-art-618f5f856db949159e7b82ebe99e3493 |
| institution | Kabale University |
| issn | 1687-7357 1687-7365 |
| language | English |
| publishDate | 2017-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Advances in High Energy Physics |
| spelling | doaj-art-618f5f856db949159e7b82ebe99e34932025-08-20T03:34:52ZengWileyAdvances in High Energy Physics1687-73571687-73652017-01-01201710.1155/2017/96718169671816Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov MethodItuen B. Okon0Oyebola Popoola1Cecilia N. Isonguyo2Theoretical Physics Group, Department of Physics, University of Uyo, Uyo, NigeriaTheoretical Physics Group, Department of Physics, University of Ibadan, Ibadan, NigeriaTheoretical Physics Group, Department of Physics, University of Uyo, Uyo, NigeriaWe used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP). We obtained the energy eigenvalues and the total normalized wave function. We employed Hellmann-Feynman Theorem (HFT) to compute expectation values r-2, r-1, T, and p2 for four different diatomic molecules: hydrogen molecule (H2), lithium hydride molecule (LiH), hydrogen chloride molecule (HCl), and carbon (II) oxide molecule. The resulting energy equation reduces to three well-known potentials which are as follows: Hulthen potential, Yukawa potential, and inversely quadratic potential. The bound state energies for Hulthen and Yukawa potentials agree with the result reported in existing literature. We obtained the numerical bound state energies of the expectation values by implementing MATLAB algorithm using experimentally determined spectroscopic constant for the different diatomic molecules. We developed mathematica programming to obtain wave function and probability density plots for different orbital angular quantum number.http://dx.doi.org/10.1155/2017/9671816 |
| spellingShingle | Ituen B. Okon Oyebola Popoola Cecilia N. Isonguyo Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method Advances in High Energy Physics |
| title | Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method |
| title_full | Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method |
| title_fullStr | Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method |
| title_full_unstemmed | Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method |
| title_short | Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method |
| title_sort | approximate solutions of schrodinger equation with some diatomic molecular interactions using nikiforov uvarov method |
| url | http://dx.doi.org/10.1155/2017/9671816 |
| work_keys_str_mv | AT ituenbokon approximatesolutionsofschrodingerequationwithsomediatomicmolecularinteractionsusingnikiforovuvarovmethod AT oyebolapopoola approximatesolutionsofschrodingerequationwithsomediatomicmolecularinteractionsusingnikiforovuvarovmethod AT cecilianisonguyo approximatesolutionsofschrodingerequationwithsomediatomicmolecularinteractionsusingnikiforovuvarovmethod |