Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method

We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP). We obtained the energy eigenvalues and the total normalized wave function. We employed Hel...

Full description

Saved in:
Bibliographic Details
Main Authors: Ituen B. Okon, Oyebola Popoola, Cecilia N. Isonguyo
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2017/9671816
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP). We obtained the energy eigenvalues and the total normalized wave function. We employed Hellmann-Feynman Theorem (HFT) to compute expectation values r-2, r-1, T, and p2 for four different diatomic molecules: hydrogen molecule (H2), lithium hydride molecule (LiH), hydrogen chloride molecule (HCl), and carbon (II) oxide molecule. The resulting energy equation reduces to three well-known potentials which are as follows: Hulthen potential, Yukawa potential, and inversely quadratic potential. The bound state energies for Hulthen and Yukawa potentials agree with the result reported in existing literature. We obtained the numerical bound state energies of the expectation values by implementing MATLAB algorithm using experimentally determined spectroscopic constant for the different diatomic molecules. We developed mathematica programming to obtain wave function and probability density plots for different orbital angular quantum number.
ISSN:1687-7357
1687-7365