Electroless palladium or nickel-phosphorus plating for fouling mitigation in high-temperature water systems

As a method to mitigate fouling at the venturi flowmeter of pressurized water reactors, electroless nickel-phosphorus (Ni–P) plating and palladium (Pd) plating were conducted on AISI 304L stainless steel specimens and evaluated through a series of performance tests, including static corrosion testin...

Full description

Saved in:
Bibliographic Details
Main Authors: Wonjun Choi, Young-Jin Kim, Dong-Seok Lim, Chi Bum Bahn
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:Materials Research Express
Subjects:
Online Access:https://doi.org/10.1088/2053-1591/adc5c7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a method to mitigate fouling at the venturi flowmeter of pressurized water reactors, electroless nickel-phosphorus (Ni–P) plating and palladium (Pd) plating were conducted on AISI 304L stainless steel specimens and evaluated through a series of performance tests, including static corrosion testing, adhesion testing, and water loop testing using mock-up venturis. As expected from the zeta potentials, no iron oxide particles deposited on the surface of the plated specimens. The Ni-plated specimens exhibited localized corrosion, whereas the minimum oxidation was observed on the Pd-plated specimens. The water loop tests showed consistent results with the static corrosion testing. The adhesion forces after a four-month corrosion test were similar to those before. The overall performance tests indicated that electroless Pd plating on the inner surfaces of venturis could be a viable solution for mitigating fouling in pressurized water reactors.
ISSN:2053-1591