Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)

The paper researches the continuity of fractal interpolation function’s fractional order integral on [0,+∞) and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on [0,b](b>0) or not. Relevant theorems of iterated function system...

Full description

Saved in:
Bibliographic Details
Main Author: XueZai Pan
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/640628
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560385737097216
author XueZai Pan
author_facet XueZai Pan
author_sort XueZai Pan
collection DOAJ
description The paper researches the continuity of fractal interpolation function’s fractional order integral on [0,+∞) and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on [0,b](b>0) or not. Relevant theorems of iterated function system and Riemann-Liouville fractional order calculus are used to prove the above researched content. The conclusion indicates that fractional order integral of fractal interpolation function is a continuous function on [0,+∞) and fractional order integral of fractal interpolation is still a fractal interpolation function on the interval [0,b].
format Article
id doaj-art-61808c6837dc4606a419705bb58f07b4
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-61808c6837dc4606a419705bb58f07b42025-02-03T01:27:44ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/640628640628Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)XueZai Pan0Faculty of Science, Jiangsu University, Zhenjiang 212013, ChinaThe paper researches the continuity of fractal interpolation function’s fractional order integral on [0,+∞) and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on [0,b](b>0) or not. Relevant theorems of iterated function system and Riemann-Liouville fractional order calculus are used to prove the above researched content. The conclusion indicates that fractional order integral of fractal interpolation function is a continuous function on [0,+∞) and fractional order integral of fractal interpolation is still a fractal interpolation function on the interval [0,b].http://dx.doi.org/10.1155/2014/640628
spellingShingle XueZai Pan
Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)
Abstract and Applied Analysis
title Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)
title_full Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)
title_fullStr Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)
title_full_unstemmed Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)
title_short Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)
title_sort fractional calculus of fractal interpolation function on 0 b b 0
url http://dx.doi.org/10.1155/2014/640628
work_keys_str_mv AT xuezaipan fractionalcalculusoffractalinterpolationfunctionon0bb0