Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)
The paper researches the continuity of fractal interpolation function’s fractional order integral on [0,+∞) and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on [0,b](b>0) or not. Relevant theorems of iterated function system...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/640628 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832560385737097216 |
---|---|
author | XueZai Pan |
author_facet | XueZai Pan |
author_sort | XueZai Pan |
collection | DOAJ |
description | The paper researches the continuity of fractal interpolation function’s fractional order integral on [0,+∞) and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on [0,b](b>0) or not. Relevant theorems of iterated function system and Riemann-Liouville fractional order calculus are used to prove the above researched content. The conclusion indicates that fractional order integral of fractal interpolation function is a continuous function on [0,+∞) and fractional order integral of fractal interpolation is still a fractal interpolation function on the interval [0,b]. |
format | Article |
id | doaj-art-61808c6837dc4606a419705bb58f07b4 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-61808c6837dc4606a419705bb58f07b42025-02-03T01:27:44ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/640628640628Fractional Calculus of Fractal Interpolation Function on [0,b](b>0)XueZai Pan0Faculty of Science, Jiangsu University, Zhenjiang 212013, ChinaThe paper researches the continuity of fractal interpolation function’s fractional order integral on [0,+∞) and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on [0,b](b>0) or not. Relevant theorems of iterated function system and Riemann-Liouville fractional order calculus are used to prove the above researched content. The conclusion indicates that fractional order integral of fractal interpolation function is a continuous function on [0,+∞) and fractional order integral of fractal interpolation is still a fractal interpolation function on the interval [0,b].http://dx.doi.org/10.1155/2014/640628 |
spellingShingle | XueZai Pan Fractional Calculus of Fractal Interpolation Function on [0,b](b>0) Abstract and Applied Analysis |
title | Fractional Calculus of Fractal Interpolation Function on [0,b](b>0) |
title_full | Fractional Calculus of Fractal Interpolation Function on [0,b](b>0) |
title_fullStr | Fractional Calculus of Fractal Interpolation Function on [0,b](b>0) |
title_full_unstemmed | Fractional Calculus of Fractal Interpolation Function on [0,b](b>0) |
title_short | Fractional Calculus of Fractal Interpolation Function on [0,b](b>0) |
title_sort | fractional calculus of fractal interpolation function on 0 b b 0 |
url | http://dx.doi.org/10.1155/2014/640628 |
work_keys_str_mv | AT xuezaipan fractionalcalculusoffractalinterpolationfunctionon0bb0 |