Ozone dry deposition through plant stomata: multi-model comparison with flux observations and the role of water stress as part of AQMEII4 Activity 2
<p>A substantial portion of tropospheric <span class="inline-formula">O<sub>3</sub></span> dry deposition occurs after diffusion of <span class="inline-formula">O<sub>3</sub></span> through plant stomata. Simulating stomatal u...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Copernicus Publications
2025-08-01
|
| Series: | Atmospheric Chemistry and Physics |
| Online Access: | https://acp.copernicus.org/articles/25/8613/2025/acp-25-8613-2025.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849735237258444800 |
|---|---|
| author | A. M. Khan O. E. Clifton O. E. Clifton J. O. Bash S. Bland N. Booth P. Cheung L. Emberson J. Flemming E. Fredj S. Galmarini L. Ganzeveld O. Gazetas O. Gazetas I. Goded C. Hogrefe C. D. Holmes L. Horváth V. Huijnen Q. Li P. A. Makar I. Mammarella G. Manca J. W. Munger J. W. Munger J. L. Pérez-Camanyo J. Pleim L. Ran R. San Jose D. Schwede S. J. Silva R. Staebler S. Sun S. Sun A. P. K. Tai A. P. K. Tai A. P. K. Tai E. Tas T. Vesala T. Vesala T. Weidinger Z. Wu Z. Wu L. Zhang P. C. Stoy |
| author_facet | A. M. Khan O. E. Clifton O. E. Clifton J. O. Bash S. Bland N. Booth P. Cheung L. Emberson J. Flemming E. Fredj S. Galmarini L. Ganzeveld O. Gazetas O. Gazetas I. Goded C. Hogrefe C. D. Holmes L. Horváth V. Huijnen Q. Li P. A. Makar I. Mammarella G. Manca J. W. Munger J. W. Munger J. L. Pérez-Camanyo J. Pleim L. Ran R. San Jose D. Schwede S. J. Silva R. Staebler S. Sun S. Sun A. P. K. Tai A. P. K. Tai A. P. K. Tai E. Tas T. Vesala T. Vesala T. Weidinger Z. Wu Z. Wu L. Zhang P. C. Stoy |
| author_sort | A. M. Khan |
| collection | DOAJ |
| description | <p>A substantial portion of tropospheric <span class="inline-formula">O<sub>3</sub></span> dry deposition occurs after diffusion of <span class="inline-formula">O<sub>3</sub></span> through plant stomata. Simulating stomatal uptake of <span class="inline-formula">O<sub>3</sub></span> in 3D atmospheric chemistry models is important in the face of increasing drought-induced declines in stomatal conductance and enhanced ambient <span class="inline-formula">O<sub>3</sub></span>. Here, we present a comparison of the stomatal component of <span class="inline-formula">O<sub>3</sub></span> dry deposition (<span class="inline-formula">eg<sub>s</sub></span>) from chemical transport models and estimates of <span class="inline-formula">eg<sub>s</sub></span> from observed <span class="inline-formula">CO<sub>2</sub></span>, latent heat, and <span class="inline-formula">O<sub>3</sub></span> flux. The dry deposition schemes were configured as single-point models forced with data collected at flux towers. We conducted sensitivity analyses to study the impact of model parameters that control stomatal moisture stress on modeled <span class="inline-formula">eg<sub>s</sub></span>. Examining six sites around the Northern Hemisphere, we find that the seasonality of observed flux-based <span class="inline-formula">eg<sub>s</sub></span> agrees with the seasonality of simulated <span class="inline-formula">eg<sub>s</sub></span> at times during the growing season, with disagreements occurring during the later part of the growing season at some sites. We find that modeled water stress effects are too strong in a temperate–boreal transition forest. Some single-point models overestimate summertime <span class="inline-formula">eg<sub>s</sub></span> in a seasonally water-limited Mediterranean shrubland. At all sites examined, modeled <span class="inline-formula">eg<sub>s</sub></span> was sensitive to parameters that control the vapor pressure deficit stress. At specific sites that experienced substantial declines in soil moisture, the simulation of <span class="inline-formula">eg<sub>s</sub></span> was highly sensitive to parameters that control the soil moisture stress. The findings demonstrate the challenges in accurately representing the effects of moisture stress on the stomatal sink of <span class="inline-formula">O<sub>3</sub></span> during observed increases in dryness due to ecosystem-specific plant–resource interactions.</p> |
| format | Article |
| id | doaj-art-617dbdcdb2b74326962c13d17fd25ded |
| institution | DOAJ |
| issn | 1680-7316 1680-7324 |
| language | English |
| publishDate | 2025-08-01 |
| publisher | Copernicus Publications |
| record_format | Article |
| series | Atmospheric Chemistry and Physics |
| spelling | doaj-art-617dbdcdb2b74326962c13d17fd25ded2025-08-20T03:07:37ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-08-01258613863510.5194/acp-25-8613-2025Ozone dry deposition through plant stomata: multi-model comparison with flux observations and the role of water stress as part of AQMEII4 Activity 2A. M. Khan0O. E. Clifton1O. E. Clifton2J. O. Bash3S. Bland4N. Booth5P. Cheung6L. Emberson7J. Flemming8E. Fredj9S. Galmarini10L. Ganzeveld11O. Gazetas12O. Gazetas13I. Goded14C. Hogrefe15C. D. Holmes16L. Horváth17V. Huijnen18Q. Li19P. A. Makar20I. Mammarella21G. Manca22J. W. Munger23J. W. Munger24J. L. Pérez-Camanyo25J. Pleim26L. Ran27R. San Jose28D. Schwede29S. J. Silva30R. Staebler31S. Sun32S. Sun33A. P. K. Tai34A. P. K. Tai35A. P. K. Tai36E. Tas37T. Vesala38T. Vesala39T. Weidinger40Z. Wu41Z. Wu42L. Zhang43P. C. Stoy44Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USANASA Goddard Institute for Space Studies, New York, NY, USACenter for Climate Systems Research, Columbia Climate School, Columbia University in the City of New York, New York, NY, USAOffice of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USAStockholm Environment Institute, Environment and Geography Department, University of York, York, UKEnvironment and Geography Department, University of York, York, UKAir Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, CanadaEnvironment and Geography Department, University of York, York, UKEuropean Centre for Medium-Range Weather Forecasts, Reading, UKDepartment of Computer Science, The Jerusalem College of Technology, Jerusalem, IsraelJoint Research Centre (JRC), European Commission, Ispra, ItalyMeteorology and Air Quality, Wageningen University, Wageningen, the NetherlandsJoint Research Centre (JRC), European Commission, Ispra, Italynow at: Scottish Universities Environmental Research Centre (SUERC), East Kilbride, UKJoint Research Centre (JRC), European Commission, Ispra, ItalyOffice of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USADepartment of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USAELKH-SZTE Photoacoustic Research Group, Department of Optics and Quantum Electronics, University of Szeged, Szeged, HungaryRoyal Netherlands Meteorological Institute, De Bilt, the NetherlandsThe Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, IsraelAir Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, CanadaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, FinlandJoint Research Centre (JRC), European Commission, Ispra, ItalySchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USAComputer Science School, Technical University of Madrid (UPM), Madrid, SpainCenter for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USANatural Resources Conservation Service, United States Department of Agriculture, Greensboro, NC, USAComputer Science School, Technical University of Madrid (UPM), Madrid, SpainOffice of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USADepartment of Earth Sciences, University of Southern California, Los Angeles, CA, USAAir Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, CanadaDepartment of Earth and Environmental Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, Chinanow at: National Centre for Earth Observation, University of Edinburgh, Edinburgh, EH9 3FF, UKDepartment of Earth and Environmental Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, ChinaState Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, ChinaInstitute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, ChinaThe Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, IsraelInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, FinlandInstitute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FinlandDepartment of Meteorology, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, HungaryORISE Fellow at Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USAnow at: RTI International, Research Triangle Park, NC, USAAir Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, CanadaBiological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA<p>A substantial portion of tropospheric <span class="inline-formula">O<sub>3</sub></span> dry deposition occurs after diffusion of <span class="inline-formula">O<sub>3</sub></span> through plant stomata. Simulating stomatal uptake of <span class="inline-formula">O<sub>3</sub></span> in 3D atmospheric chemistry models is important in the face of increasing drought-induced declines in stomatal conductance and enhanced ambient <span class="inline-formula">O<sub>3</sub></span>. Here, we present a comparison of the stomatal component of <span class="inline-formula">O<sub>3</sub></span> dry deposition (<span class="inline-formula">eg<sub>s</sub></span>) from chemical transport models and estimates of <span class="inline-formula">eg<sub>s</sub></span> from observed <span class="inline-formula">CO<sub>2</sub></span>, latent heat, and <span class="inline-formula">O<sub>3</sub></span> flux. The dry deposition schemes were configured as single-point models forced with data collected at flux towers. We conducted sensitivity analyses to study the impact of model parameters that control stomatal moisture stress on modeled <span class="inline-formula">eg<sub>s</sub></span>. Examining six sites around the Northern Hemisphere, we find that the seasonality of observed flux-based <span class="inline-formula">eg<sub>s</sub></span> agrees with the seasonality of simulated <span class="inline-formula">eg<sub>s</sub></span> at times during the growing season, with disagreements occurring during the later part of the growing season at some sites. We find that modeled water stress effects are too strong in a temperate–boreal transition forest. Some single-point models overestimate summertime <span class="inline-formula">eg<sub>s</sub></span> in a seasonally water-limited Mediterranean shrubland. At all sites examined, modeled <span class="inline-formula">eg<sub>s</sub></span> was sensitive to parameters that control the vapor pressure deficit stress. At specific sites that experienced substantial declines in soil moisture, the simulation of <span class="inline-formula">eg<sub>s</sub></span> was highly sensitive to parameters that control the soil moisture stress. The findings demonstrate the challenges in accurately representing the effects of moisture stress on the stomatal sink of <span class="inline-formula">O<sub>3</sub></span> during observed increases in dryness due to ecosystem-specific plant–resource interactions.</p>https://acp.copernicus.org/articles/25/8613/2025/acp-25-8613-2025.pdf |
| spellingShingle | A. M. Khan O. E. Clifton O. E. Clifton J. O. Bash S. Bland N. Booth P. Cheung L. Emberson J. Flemming E. Fredj S. Galmarini L. Ganzeveld O. Gazetas O. Gazetas I. Goded C. Hogrefe C. D. Holmes L. Horváth V. Huijnen Q. Li P. A. Makar I. Mammarella G. Manca J. W. Munger J. W. Munger J. L. Pérez-Camanyo J. Pleim L. Ran R. San Jose D. Schwede S. J. Silva R. Staebler S. Sun S. Sun A. P. K. Tai A. P. K. Tai A. P. K. Tai E. Tas T. Vesala T. Vesala T. Weidinger Z. Wu Z. Wu L. Zhang P. C. Stoy Ozone dry deposition through plant stomata: multi-model comparison with flux observations and the role of water stress as part of AQMEII4 Activity 2 Atmospheric Chemistry and Physics |
| title | Ozone dry deposition through plant stomata: multi-model comparison with flux observations and the role of water stress as part of AQMEII4 Activity 2 |
| title_full | Ozone dry deposition through plant stomata: multi-model comparison with flux observations and the role of water stress as part of AQMEII4 Activity 2 |
| title_fullStr | Ozone dry deposition through plant stomata: multi-model comparison with flux observations and the role of water stress as part of AQMEII4 Activity 2 |
| title_full_unstemmed | Ozone dry deposition through plant stomata: multi-model comparison with flux observations and the role of water stress as part of AQMEII4 Activity 2 |
| title_short | Ozone dry deposition through plant stomata: multi-model comparison with flux observations and the role of water stress as part of AQMEII4 Activity 2 |
| title_sort | ozone dry deposition through plant stomata multi model comparison with flux observations and the role of water stress as part of aqmeii4 activity 2 |
| url | https://acp.copernicus.org/articles/25/8613/2025/acp-25-8613-2025.pdf |
| work_keys_str_mv | AT amkhan ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT oeclifton ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT oeclifton ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT jobash ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT sbland ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT nbooth ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT pcheung ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT lemberson ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT jflemming ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT efredj ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT sgalmarini ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT lganzeveld ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT ogazetas ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT ogazetas ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT igoded ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT chogrefe ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT cdholmes ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT lhorvath ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT vhuijnen ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT qli ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT pamakar ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT imammarella ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT gmanca ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT jwmunger ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT jwmunger ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT jlperezcamanyo ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT jpleim ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT lran ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT rsanjose ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT dschwede ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT sjsilva ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT rstaebler ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT ssun ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT ssun ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT apktai ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT apktai ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT apktai ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT etas ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT tvesala ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT tvesala ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT tweidinger ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT zwu ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT zwu ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT lzhang ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 AT pcstoy ozonedrydepositionthroughplantstomatamultimodelcomparisonwithfluxobservationsandtheroleofwaterstressaspartofaqmeii4activity2 |