Cyber-Secure IoT and Machine Learning Framework for Optimal Emergency Ambulance Allocation
Optimizing ambulance deployment is a critical task in emergency medical services (EMS), as it directly affects patient outcomes and system efficiency. This study proposes a cyber-secure, machine learning-based framework for predicting region-specific ambulance allocation and response times across So...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/13/7156 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Optimizing ambulance deployment is a critical task in emergency medical services (EMS), as it directly affects patient outcomes and system efficiency. This study proposes a cyber-secure, machine learning-based framework for predicting region-specific ambulance allocation and response times across South Korea. The model integrates heterogeneous datasets—including demographic profiles, transportation indices, medical infrastructure, and dispatch records from 229 EMS centers—and incorporates real-time IoT streams such as traffic flow and geolocation data to enhance temporal responsiveness. Supervised regression algorithms—Random Forest, XGBoost, and LightGBM—were trained on 2061 center-month observations. Among these, Random Forest achieved the best balance of accuracy and interpretability (MSE = 0.05, RMSE = 0.224). Feature importance analysis revealed that monthly patient transfers, dispatch variability, and high-acuity case frequencies were the most influential predictors, underscoring the temporal and contextual complexity of EMS demand. To support policy decisions, a Lasso-based simulation tool was developed, enabling dynamic scenario testing for optimal ambulance counts and dispatch time estimates. The model also incorporates the coefficient of variation (CV) of workload intensity as a performance metric to guide long-term capacity planning and equity assessment. All components operate within a cyber-secure architecture that ensures end-to-end encryption of sensitive EMS and IoT data, maintaining compliance with privacy regulations such as GDPR and HIPAA. By integrating predictive analytics, real-time data, and operational simulation within a secure framework, this study offers a scalable and resilient solution for data-driven EMS resource planning. |
|---|---|
| ISSN: | 2076-3417 |