Quantifying Thermal Demand in Public Space: A Pedestrian-Weighted Model for Outdoor Thermal Comfort Design

With accelerating urbanization, the outdoor thermal environment has become a critical factor affecting the thermal comfort of public spaces, particularly in high-density commercial districts and pedestrian-concentrated areas. To enhance thermal comfort and livability in public outdoor space, this st...

Full description

Saved in:
Bibliographic Details
Main Authors: Deyin Zhang, Gang Liu, Kaifa Kang, Xin Chen, Shu Sun, Yongxin Xie, Borong Lin
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/13/2156
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With accelerating urbanization, the outdoor thermal environment has become a critical factor affecting the thermal comfort of public spaces, particularly in high-density commercial districts and pedestrian-concentrated areas. To enhance thermal comfort and livability in public outdoor space, this study proposes a thermal demand-responsive design approach that integrates thermal conditions with pedestrian flow dynamics. A commercial pedestrian mall featuring semi-open public spaces and air-conditioned interior retail areas was selected as a case study. Computational Fluid Dynamics (CFD) simulations were conducted based on design-phase documentation and field measurements to model the thermal environment. The Universal Thermal Climate Index (UTCI) was employed to assess thermal comfort levels, and thermal discomfort was further quantified using the Heat Discomfort Index (HI). Simultaneously, pedestrian density distribution (λ) was analyzed using the agent-based simulation software MassMotion (Version 11.0). A demand of thermal comfort (DTC) index was developed by coupling UTCI-based thermal conditions with pedestrian density, enabling the spatial quantification of thermal demand across the whole commercial pedestrian mall. For example, in a sidewalk area parallel to the main street, several points exhibited high discomfort levels (HI = 0.95) but low pedestrian volume, resulting in DTC values approximately 0.2 units lower than adjacent zones with lower discomfort levels (HI = 0.7) but higher foot traffic. Such differences demonstrate how DTC can reveal priority areas for intervention. Key zones requiring thermal improvement were identified based on DTC values, providing a quantitative foundation for outdoor thermal environment design. This method provides both a theoretical foundation and a practical tool for the sustainable planning and optimization of urban public spaces.
ISSN:2075-5309