Short- and Long-Term Endothelial Inflammation Have Distinct Effects and Overlap with Signatures of Cellular Senescence

This study investigates the interplay between cellular senescence and inflammation in human umbilical vein endothelial cells (HUVECs). We employed RNA sequencing to analyze gene expression changes in HUVECs subjected to replicative- or radiation-stress-induced senescence, and we compared these profi...

Full description

Saved in:
Bibliographic Details
Main Authors: Barbora Belakova, José Basílio, Manuel Campos-Medina, Anna F. P. Sommer, Adrianna Gielecińska, Ulrike Resch, Johannes A. Schmid
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/14/11/806
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the interplay between cellular senescence and inflammation in human umbilical vein endothelial cells (HUVECs). We employed RNA sequencing to analyze gene expression changes in HUVECs subjected to replicative- or radiation-stress-induced senescence, and we compared these profiles with those of cells under acute or chronic TNFα-mediated inflammation. Our findings reveal that both senescence types exhibited significant upregulation of genes associated with epithelial- (or endothelial) mesenchymal transition (EMT) and inflammatory pathways, indicating a shared molecular response. Notably, chronic inflammation led to a pronounced EMT signature, while acute inflammation primarily activated classical inflammatory responses. Experimental validation confirmed reduced proliferation and increased secretion of pro-inflammatory cytokines (IL-6 and IL-8) in senescent and chronically inflamed cells and substantiated the upregulation of EMT marker genes. Additionally, we observed impaired wound healing capacity in senescent and chronically inflamed cells, highlighting the functional consequences of these cellular states. Our study underscores the critical role of inflammation in exacerbating senescence-related changes, contributing to the understanding of age-related cardiovascular pathologies. These insights may inform future therapeutic strategies aimed at mitigating the effects of aging and inflammation on endothelial function and cardiovascular health.
ISSN:2073-4409